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Abstract

We investigate experimentally and theoretically the generation of a continuous variable en-

tanglement using laser cooled atomic gas in free space and cavity mode. This is of a funda-

mental interest due to the nonclassical correlation of quadrature observables of the two-mode

squeezed (TMS) state. The TMS state is the basis for complete quantum teleportation and

continuous variable quantum repeaters. It is also used in quantum metrology and quantum

key distribution.

We employ a novel scheme for generating a TMS vacuum based on a non-degenerate four-

wave mixing process in a cold atomic cloud coupled to a cavity. We send two pumps collinear

to the cavity mode and ensure that the two generated quantum fields are simultaneously

resonant with the cavity. The cavity enhancement enables us to demonstrate results close

to a free space in hot atomic gases (-5.2 dB) where optical densities are much higher.

Our system is versatile because, together with continuous variables, it is suitable for the

discrete variable domain using the Duan-Lukin-Cirac-Zoller protocol. The design is oriented

to make the delay between two modes possible and could be used for hybrid continuous

repeaters. The system is devised and built fully as a part of my PhD, wherein we characterize

our system and demonstrate the squeezing of -3.7 dB.

Since the quantum dynamics of the system is not intuitive, we provide simple models

and consolidate segmental information on generation of TMS states. To make sure that the

dynamics is not oversimplified, we construct a novel theory where we treat both fields and

atoms as quantum objects. The theory supports and enriches our understanding and confirms

our experimental data. Based on the experimental and theoretical results we spotlight the

detrimental effects and propose improvements to our system.

We theoretically investigate that the certain class of TMSV states are optically dark.

These states propagate through a polarized to one hyperfine level Λ atoms without degra-

dation or evolution. Based on this we propose a new way of generation of TMSV through

the dissipation or dynamically controlled broadening.
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Chapter 1

Introduction

Interest in continuous variable entanglement arose at the early stage of quantum theory.

Einstein, Podolsky, and Rosen questioned the consistency of the theory and triggered the

quantum non-locality debate by providing the special example of the extreme continuous

entanglement state, later named the EPR state after the authors [1]. The experimental

capability to investigate similar states came only after decades of developments across the

field of quantum optics. The generation of squeezed states in hot atomic gas [2] and later in

nonlinear crystals [3] allowed the conversion of non-classical noise properties of electromag-

netic quadrature into non-classical correlations between quadratures of the different modes

[4]. The obtainable two-mode squeezed vacuum (TMSV) state is a workhorse for funda-

mental studies and is of special value for quantum science and technology [5]. TMSV is the

basis of complete quantum teleportation [6], continuous variable (CV) quantum repeaters

[7], quantum metrology [8, 9], and quantum key distribution [10, 11].

Squeezing is mainly generated via parametric processes, when nonlinear media mediates

scattering of pumping fields into photons having correlated properties. The nonlinear pro-

cesses include parametric down-conversion in nonlinear crystals [3, 12] and four-wave mixing

(FWM) in both fibers [13] and atomic gases [14, 15]. Other exotic media to generate squeez-

ing are semiconducting lasers [16], optomechanical systems [17], rare earth ion doped crystals
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[18, 19], as well as non-optical squeezing in microwave domain [20] and trapped ions [21].

The generation of a TMSV within an atomic ensemble has a special interest with perspective

of integration with atomic quantum memories for a large scale network.

1.1 Squeezing generation

Squeezing was first observed in 1985 via degenerate FWM in a hot sodium vapour [2].

In this experiment the quadratures of the single optical mode were squeezed by –0.3 dB

below the standard quantum limit. Implementation of a cold atomic cloud in a cavity

for squeezing generation by the Giacobino group helped to improve the previous result to

–1 dB [22], but no entanglement investigation was done. Subsequent work by the same

group [23] allowed observation of two-mode squeezing and the corresponding violation of the

separability criteria in continuous variables [24]. The low value of the squeezing in these

experiments was explained by unwanted incoherent processes such as Raman scattering,

which result in increased noise in quadrature correlations.

A substantial increase in two-mode squeezing generation in atomic ensembles was achieved

in hot vapor by McCormick et al. [25]. The mechanism they employed for two-mode squeez-

ing was FWM, which was induced by a far-detuned continuous pump acting on both transi-

tions in the atomic Λ scheme. The resulting Stokes and anti-Stokes modes exhibit correlations

in the number of photons. An extra seeding of one of the modes with a coherent state dis-

places both states by a complex amplitude, thus producing a displaced two-mode squeezing.

The displacement partially removes the problem with excess noise, since the contributions

of harmful fluctuations from other nonlinear processes cancel out [25, 26]. This seeded TMS

is called either twin-beam or intensity squeezing.

Later, the same system was used to demonstrate spatially multimode quadrature squeez-

ing [15]. A noise reduction of –4 dB below the vacuum level was achieved by exploiting

the coherence of the long-lived atomic hyperfine states. The local oscillator (LO) was sent
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through the same atomic cell in order to reduce the phase fluctuation between the photons

and LO and, hence, to see the quadtrature correlation below the vacuum level. The use

of a LO having different spatial modes helped to quantify entanglement between different

spatial modes. Shortly after this experiment, time delayed entanglement was demonstrated

by sending one of the conjugated beams through the slow light media formed [27]. We

summarize six important experiments on TMS generation in atomic ensembles in Table 1.1.

We additionally mention milestones on squeezing generation in other media, among which

are the first generation of TMS [4] and the record value of TMS [12] (highlighted with gray

color).

Atoms
Atomic
media

Type of
Squeezing

Squeezing
level, dB

Reference Year

Na atomic beam Single mode -0.3 Slusher [2] 1985
KTiOPO4 crystal Intensity -1.55 Heidmann [4] 1987

Cs MOT Quadrature -0.22 Josse [23] 2004
85Rb vapour Intensity -8.1 (-3.5) McCormick[25] 2007
85Rb vapour Intensity -8.8 McCormick[28] 2008
85Rb vapour Quadrature -5.2 (-4.3) Boyer[15] 2008
Cs room T Quadrature -3.5 Wasilewski [29] 2009

85Rb vapour Intensity -9.2 Glorieux [14] 2011
PPKTP crystal Quadrature -10.45 Eberle [12] 2013

Table (1.1) Two-mode squeezing in atomic ensembles, with the first experiment on a single-
mode squeezing included. In the brackets are the values uncorrected for losses if given.

1.2 Duan-Lukin-Cirac-Zoller protocol

A similar approach in a slightly different context was proposed for creating a discrete

variable repeater [30] and called after the authors: Duan, Lukin, Cirac, and Zoller (DLCZ).

In this protocol, a polarized atomic sample with the Λ-level scheme is exposed to a pump

that acts on one transition. The resulting Raman scattering creates TMSV between the scat-

tered light and the atomic excitation. The detection of scattered light projects the created

entanglement between atoms and light into an atomic coherent excitation superposition. If
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the atomic sample is homogeneous and has a large enough coherence time, the application

of the second strong counter-propagating pump converts the atomic excitation into a pho-

tonic mode with a given wavevector, which is determined by the phase matching of two

applied pumps and scattered photons. Thanks to the coherent enhancement, the probability

of restoring the excitation or retrieval efficiency is proportional to 1 − e−α, where α is the

ensemble’s optical depth [31].

The first demonstration of single photon generation was performed in cold atomic gas,

where non-classical properties of restored field has been observed [32, 33]. Subsequent re-

search extended the protocol applicability with temporal and spatial multimodeness [34, 35],

the long lifetime of atomic coherence [36, 37, 38], and enhanced efficiency [39, 40]. Further-

more, in some experiments high efficiency has been combined with a long lifetime [41, 42].

The two mechanisms behind the lifetime extension were the confinement of atoms in

an optical lattice and the use of collinear geometry, both of which minimize dephasing

due to atomic motion. Moreover, both the optical lattices operating at the magic wave-

length [43] and the encoding of atomic excitation on magnetically insensitive levels suppress

inhomogeneity—due to optical Stark shifts and magnetic field—and extend the lifetime fur-

ther.

High efficiency requires significant optical depth of an ensemble. The straightforward

increase of optical depth can be done by employing a denser atomic ensemble, for example,

the compressed 2D magneto-optical trap [44]. In the same time the large density introduces

inhomogeneity, which limits efficiency and coherence lifetime. Trapping an atomic ensemble

with high optical depth is also challenging, due to larger atom-atom interaction within the

trap. Another way to effectively enhance an optical depth is to use an optical cavity. It

seems to be the more prominent approach that combines benefits of trapped dilute gas with

high restoring efficiency [42].
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1.3 Motivation

We propose to extend the DLCZ system into the continuous variable domain. As a

method it holds promise for generating of two-mode squeezed light with a long programmable

delay [45]. The most obvious application of continuous variables is unconditional telepor-

tation between atomic ensembles, which has the advantage of transferring quantum states

with subsequent purification [46, 47].

The setup’s versatility allows operation in two regimes, discrete and continuous. While

the continuous domain spans over the infinite basis, in the discrete domain, information is

encoded in an arbitrary superposition of two orthogonal states of photon: α | 0 〉 + β | 1 〉.

The discrete states, | 0 〉 and | 1 〉, can be set by different physical degrees of freedom: the

Fock basis, polarization states, frequency or time bins, and different spatial modes [48]. One

major advantage of the discrete variables in communication is that in most bases the encoded

quantum information is not affected by linear loss. Herein, losses do not decrease the fidelity

of the measured state, but they only reduce the communication rate between two parties.

CVs however deal with observables having a continuous spectrum of eigenvalues, such as

canonical position or momentum of electromagnetic mode. The main advantage of the CV is

its ability to perform an unconditional swap between two remotely separated entangled states

via a phase-space displacement, conditioned on the measurement result [49]. In this case,

the losses degrade the fidelity of the prepared state but do not change the rate. Therewith,

there exist hybrid schemes that combine the strengths of both domains [50, 51].

Thus, the developed setup would be capable of working in hybrid version of quantum

teleportation and repeater protocols. Several identical setups of this kind should also al-

low the creation of an entanglement between discrete and continuous variable systems and

teleportation of a discrete variable state using CV protocols.
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1.4 Methods

In our work we would like to combine promising approaches towards the single system,

which unites the collective coherent enhancement of the emission by a cavity and advantages

of cold atomic ensembles as the light storage media. The use of the optical cavity for

Stokes and anti-Stokes photons defines the spatial modes and increases efficiency. It could

be understood as the incoming light bounces back and forth between the mirrors, thus

increasing effective interaction duration. High efficiency manifests itself as high coincidence

counts in a single photon regime and as a quadrature correlation below the standard quantum

limit in continuous variables.

By means of laser cooling the atoms are slowed down to the temperatures below 100

µK. Thus atoms could be considered effectively stationary during short interaction times.

Together with that, cooling removes the Doppler inhomogeneous broadening, narrowing

atomic linewidth to the natural one. Long-lived hyperfine coherence of the cold atomic

ensemble enables millisecond storage time and can be extended to a sub-second by confining

gas in an optical dipole trap [42].

The detection of two-mode squeezing and hence the CV entanglement is performed by

means of homodyne detection [52]. The homodyne detection produces an output based

on a result of an interference between the input state and the classical wave with a given

complex amplitude. The technique allows measurement of an arbitrary superposition of

canonical position and momentum of the electromagnetic mode. Subsequent processing of

the measurement discloses nonclassical correlations between the modes.

Theoretically the system is analyzed in the Heisenberg-Langevin picture [53]. The ob-

tained system of stochastic differential equation enables to build up intuitive and qualitative

description of the experiment. The different regimes of operation and proper control param-

eters of the experiment can be validated through the theoretical analysis.
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1.5 Outline

In this dissertation I study two mode squeezing generation in atomic ensembles both

experimentally and theoretically. Each chapter has a detailed outline, below I give the

general concept and the roadmap of my dissertation.

The second chapter covers the requisite theoretical background. Introductory Section

2.1 sets forth the three main concepts of two-mode squeezing: definition, generation, and

measurement. It is followed by a basic semiclassical model of an optical parametric oscil-

lator that evinces the genuine generation process and notable regimes of operation. The

subsequent section describes the basic theory of light-atom interaction, where an ensemble

of two-level atoms is coupled to a cavity mode. Based on this, a fully quantum model is

built to describe four-wave mixing in an atomic sample that interacts with two cavity modes

and two classical pumps. The quantum and macroscopic properties of the generated light

are presented as the primary results of the chapter.

In the third chapter a new approach of two mode squeezing generation is proposed. In

contrast to the traditional approach where generation is achieved through unitary evolution,

we theoretically justify its appearance in the presence of dissipation. The system under

investigation has a typical Λ-type atomic structure, with two pumping fields addressing

both optical transitions and two signal fields, which are in two-photon resonance with the

pumps. We reveal that a TMSV state with a particular squeezing parameter propagates

through this media without absorption (is a “dark” state). Besides theoretical justification

of our idea, we find a number of experiments showing evidence of the proposed mechanism.

The next chapter is devoted to an experimental apparatus and techniques for devel-

oping a cold atomic ensemble interacting with a cavity. The approaches used are general

and applicable to most quantum optical experiments with atoms. In our work we combine

well-known techniques with home-made electronics to best fit our needs, or minimize the

costs. In this chapter we describe tools emphasizing their applicability ranges and suggest-

ing modifications for further improvement of the performance. Our experiment encompasses
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atomic cloud preparation, lasers that address the atoms, cavity assembly and stabilization,

the frequency locking circuits, the optical detection scheme, and data acquisition.

In Chapter 5, we demonstrate the performance and the results of the experiment, based

on the framework from Chapter 2 and methodology from Chapter 4. In Sections 5.2–5.1 we

characterize our system as a source of two-mode squeezed light. The primary evidences of

TMS—two mode squeezing spectrum and time domain correlation—are presented in Section

5.3.
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Chapter 2

Theory

The theoretical aspects of the two-mode squeezing generation process are described in

this chapter. We progress from a simple semiclassical model to a fully quantum description.

The first two sections aim to build an intuition of squeezed states that will become a base

model for the more advanced quantum description. In Section 2.1, we derive the two-mode

squeezed state in the Fock and position bases. This derivation allows us to describe the

main properties of this state and its generation process. We account for losses via a beam-

splitter model and show how it affects the squeezing level. In Section 2.2, we construct

a simple model for a parametric process inside a cavity, and we analyze its regimes of

operation and the behaviour of observables in the Fourier-domain. To model experimental

conditions, we include losses into the physical system by means of the Langevin-Heisenberg

equations. In Section 2.3, we outline the cavity quantum electrodynamics approach as a

quantum description of light-matter interaction. Finally in the last Section 2.4, we present a

generalized theory that includes atomic level structure, two quantized cavity modes, and two

coherent fields inducing the four-wave mixing process. This derivation is done specifically

for our system and is novel.
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2.1 Two-mode squeezed state

Different quantum states of the electromagnetic field having various non-classical proper-

ties are actively used in implementation of quantum information protocols and fundamental

quantum experiments such as teleportation, quantum key distribution, quantum computing,

boson sampling, and Bell’s inequality [54, 55, 56].

The most practical approach for generation of various two mode quantum states is spon-

taneous parametric scattering in a crystal with χ(2) nonlinearity. In this process a nonlinear

crystal is pumped by a continuous wave or pulsed laser. Nonlinearity induces the decay of

the pump photon into two idler and signal photons. Energy and momentum conservation

dictates conditions for the frequency and wavevector of the scattered photons:

ωp = ωs + ωi and kp = ks + ki, (2.1)

where ωp,s,i(kp,s,i) is the frequency (wavevector) of the pump, signal, and idler photons. The

refractive index of the crystal makes fulfillment of momentum conservation more demanding,

since (2.1) is expressed as ωpnp = ωsns+ωini. The common technique to satisfy this condition

is birefringent phase matching [57], where the matching of a refractive index for ordinary and

extraordinary polarizations happens at a particular temperature. Depending on the crystal

cut different phase matching regimes could be exploited. For a Type I crystal the process is

degenerate, i.e., signal and idler photons have the same polarization; for a Type II crystal

the scattered photons have orthogonal polarizations.

For a description of the quantum properties we need to provide a quantum description of

spontaneous parametric down conversion and the generated state. Generally speaking, the

dynamics of the process are dictated by the effective Klyshko Hamiltonian [58]:

Ĥ = ~χ(2)Ωa†b†e−i(ωp−ωs−ωi)t+i(kp−ks−ki)r + h.c., (2.2)
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where a, (a†), b, (b†) are canonical creation (annihilation) operators for signal and idler modes,

Ω is the C-number corresponding to the amplitude of a pump with a phase φ, and χ(2) is an

effective nonlinearity coefficient.

It may seem that we have constrained ourselves to study of only spontaneous parametric

down-conversion. In fact the same Hamiltonian governs other nonlinear processes. The

FWM—the main scope of this dissertation—is based on a third-order nonlinearity χ(3) and

involves four waves: two pumping fields and two created fields. Nevertheless the FWM

process is described by the same effective Hamiltonian under assumption of strong undepleted

pumping fields. In this case, constants in Hamiltonian (2.2) should be replaced according to

χ(2) → χ(3) and Ω→ Ω1Ω2, where Ω1 and Ω2 are Rabi-frequencies of pumps. Further phase

matching changes to include all four waves: ωp1 + ωp2 = ωs + ωi and kp1 + kp2 = ks + ki.

2.1.1 Two-mode squeezed state in Fock basis

If conditions (2.1) are satisfied, the Hamiltonian governs the following evolution:

|Ψ(t) 〉 = exp

(
−iĤ

~
t

)
|Ψ(0) 〉 = exp

(
χ(2) |Ω | t

(
−a†b†eiφ + abe−iφ

))
|Ψ(0) 〉 , (2.3)

the time t here corresponds to time in the traveling wave reference frame. In this case the

output from a crystal with length l would correspond to time evolution t = nl/c. Usually

the evolution operator (2.3) is called the two-mode squeezer and is written in the form

S(r, φ) = exp

(
−iĤ

~
t

)
= er(−a

†b†eiφ+abe−iφ), (2.4)

where r = χ(2) |Ω |nl/c (or r = χ(3) |Ω1 | |Ω2 |nl/c) is the squeeze parameter.

The simplest example of a correlated two-mode state is the two-mode squeezed vacuum
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generated by the action of the two-mode squeezer on the two-mode vacuum:

|TMSV 〉 = er(−a
†b†eiφ+abe−iφ) | 0, 0 〉 . (2.5)

If we introduce operators K+ = a†b†, K− = ab, and 2K0 = na + nb + 1 with commutation

relationships [K−, K+] = 2K0 = [ab, a†b†] = [ab, a†]b† + a†[ab, b†] = bb† + a†a = na + nb + 1,

they form the SU(1,1) algebra that provides a relationship [59]:

eα0K0+α+K++α−K− = eγ+K+elog(γ0)K0eγ−K− , (2.6)

where γ0 =
(
cosh r − 2α0

r
sinh r

)−2
, γ± = 2α± sinh r

2θ cosh r−α0 sinh r
, r =

√
α2

0

4
− α+α−. From the form

of the squeezer we find coefficients α0 = 0, γ+ = α+

φ
tanh r and the two-mode squeezed

vacuum state has the form:

|TMSV 〉 =
e− tanh r·a†b†eiφ

cosh r
| 0, 0 〉 . (2.7)

If we introduce a new notation ε = eiφ tanh r, then for two harmonic oscillators described

by annihilation and creation operators a(a†) and b(b†), the two-mode squeezed vacuum state

can be written as

|TMSV 〉 =
√

1− |ε|2e−εa†b† | 0, 0 〉 . (2.8)

where
√

1− |ε|2 is a normalization constant with | ε | < 1. If we expand an exponent in a

Taylor series we note that the state is the sum of pairwise generated photons in two modes.

2.1.2 Two-mode squeezed state in continuous variables

As we can see from (2.8) TMSV is spanned over the whole infinite Fock basis, thus it

is natural to represent it also in continuous variables, rather than only in the excitation
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number representation. Before proceeding further, we assume the following conventions for

dimensionless canonical position and momentum operators: X̂ = â+â†√
2

and P̂ = â−â†√
2i

with

the commutation relation [X̂, P̂ ] = i. The squeezing operator modifies these quadratures

according to the Bogoliubov transformation:

S†(r, φ)X̂aS(r, φ) = cosh rX̂a + sinh rX̂b, (2.9)

S†(r, φ)X̂bS(r, φ) = cosh rX̂b + sinh rX̂a. (2.10)

The vacuum state wavefunction | 0, 0 〉 in the position representation is Gaussian and stays

Gaussian after the transformation [60]:

1√
π
e−X̂

2
a/2−X̂2

b /2 → 1√
π
e−(cosh rXb+sinh rXa)2/2−(cosh rXa+sinh rXb)

2/2. (2.11)

After this rearrangement, the position wavefunction for a TMSV is

Ψ(Xa, Xb) =
1√
π
e−e

−2r(Xa−Xb)2/4−e2r(Xa+Xb)
2/4. (2.12)

Each quadrature on its own is not squeezed, on the contrary, its range of possible values

is stretched (Fig. 2.1). However, if we measure the coordinate of one of the parties, then

the coordinate of the second mode will lie in a narrower range compared to the vacuum. In

the extreme case of an infinite squeezing, two modes (particles) are in the EPR state. If we

measure the coordinate of one mode, we can have an exact answer for the coordinate of the

second mode. Whilst this information is obtained without disturbing the second particle, the

entanglement between parties is destroyed and the momenta of the second particle becomes

fully uncertain.
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(a) (b)

Figure (2.1) The position wavefunction of a two-mode state either in (a) vacuum or (b)
two-mode squeezed state with r = −1

2.1.3 Canonical quadrature correlations

We have shown in the previous section non-classical correlations between quadratures of

two modes in a phase space, although for a consistent theory we need to have a mathematical

measure to characterize squeezing. The common approach is to find uncertainties1 of two

Hermitian operators which obey the Heisenberg uncertainty relation:

√
〈∆Â2 〉 · 〈∆B̂2 〉 ≥ 1

2
| 〈 [A,B] 〉 | . (2.13)

Specifically for the canonical position and momentum operators the Heisenberg inequality

sets the lower bound for the product of uncertainties:

√
〈∆X̂2 〉 · 〈∆P̂ 2 〉 ≥ 1

2
. The state is

called single-mode squeezed if the variance of one of the operators goes below this limiting

value 〈∆X̂2 〉 < 1
2

at the expense of uncertainty of a conjugate operator 〈∆P̂ 2 〉 > 1
2
. Both

vacuum and coherent states are the minimum-uncertainty states with 〈∆X̂2 〉 = 〈∆P̂ 2 〉 = 1
2
.

Thus the squeezed state allows to resolve signals below the shot-noise level or below vacuum

level.

The two-mode squeezed state involves two harmonic oscillators, where each of them on its

1An uncertainty or standard deviation is

√
〈∆Â2 〉 =

√
〈 Â2 〉 − 〈 Â 〉2
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own is not squeezed, but is in a thermal state. At the same time, the canonical quadratures

of two modes are nonclassicaly correlated, what could be demonstrated with the two-mode

position sum (difference)

X̂± =
X̂a ± X̂b√

2
=
â+ â† ± b̂± b̂†

2
(2.14)

and the two-mode position sum (difference) variances:

〈∆X̂2
± 〉 =

〈 ââ+ â†â† + b̂b̂+ b̂†b̂† + 2(n̂a + n̂b + 1) 〉 ± 2〈 âb̂+ â†b̂+ h.c. 〉
4

− 〈 X̂± 〉2. (2.15)

The standard quantum limit (SQL) noise is the variance (2.15) taken with respect to the

vacuum in both channels. Similarily, to a single-mode case, it is one half 〈∆X̂2
± 〉vac = 1/2.

Let us find variances for the TMSV state. The decomposition in a Fock-basis (2.8)

dictates that an average over TMSV in Equation (2.15) only leaves the terms that keep the

number of photons in both modes the same:

〈∆X̂2
± 〉TMSV =

〈 n̂a 〉TMSV + 〈 n̂b 〉TMSV + 1± 〈 âb̂+ h.c. 〉TMSV

2
. (2.16)

The mean number of photons 〈n 〉 in a single mode of |TMSV 〉 state:

〈 n̂ 〉TMSV =
(
1− | ε |2

)∑
n

| ε |2n n =
| ε |2

1− | ε |2
. (2.17)

The correlation terms are

〈 âb̂+ â†b̂† 〉TMSV = − 2<e(ε)
1− | ε |2

. (2.18)
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Thus the variance of sum (difference) of quadratures is

〈∆X̂2
± 〉TMSV =

1

2

1 + | ε |2 ∓ 2<e(ε)
1− | ε |2

=
1

2

1 + r2 ∓ 2r cos(φ)

1− r2
. (2.19)

Angle φ—the phase of the pump—sets the quadratures among which we have squeezing. As

an example φ = 2πn will result in

〈∆X̂2
± 〉TMSV

∣∣∣
φ=2πn

=
1

2

1∓ ε
1± ε

=
1

2
e∓2r, n ∈ Z. (2.20)

If the squeeze parameter is nonzero, the uncertainty of the sum of the position operators

is lower than the vacuum level fluctuations (SQL), at the same time the difference has an

excessive noise. As angle φ changes, the error contour rotates, and at angles φ = (n + 1)π

the situation is reversed: the difference is squeezed and the sum is anti-squeezed.

2.1.4 Arbitrary quadrature correlations

The quadratures experiencing squeezing are not always canonical position and momen-

tum, but generalized quadratures, which are obtained from the former by a rotation on an

arbitrary angle. These generalized quadratures are written for the intermediate angle θ,

where the angle is between the electric field amplitude and a classical reference wave2:

Q̂(θ) = cos θX̂ + sin θP̂ =
âe−iθ + â†eiθ√

2
, (2.21)

where θ ∈ {0, π} and conjugate quadrature is Q̂(θ + π/2). Following the same line of

derivations as in the previous section, and assuming each mode to have its own quadrature

with phase θa or θb, we arrive to a variance of two arbitrary quadratures of two modes

2Electric field in canonical quadratures: Êk ∝ X̂k cos(ωkt − kr) + P̂k sin(ωkt − kr) or in generalized
quadratures: Êk ∝ Q̂k(θ) cos(ωkt− kr − θ) + Q̂k(θ + π/2) sin(ωkt− kr − θ), please see [5].
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averaged over TMSV:

〈∆Q̂2
± 〉TMSV =

1

2

(
1 + r2 ∓ 2r cos (φ+ θa + θb)

1− r2

)
. (2.22)

Obviously, the properly chosen quadrature phase (θa + θb) = −φ allows measurement of the

squeezing of the corresponding quadrature. Thus the phase φ determines which pairs of

quadratures are squeezed, e.g., at φ = 0 the difference in positions X̂− is squeezed, while at

φ = π/2 the difference in momenta P̂− = P̂1 − P̂2.

2.1.5 Number of photon distribution

If we expand an exponent from Equation (2.8) in a Taylor series we note that the state

is the sum of pairwise generated photons in two modes:

|TMSV 〉 =
√

1− |ε|2
∞∑
n=0

(−ε)n |n, n 〉 . (2.23)

Each next term has less weight (| ε | < 1), although for ideal squeezing we need an infinite

number of photons. The perfectly squeezed state is impossible to generate, although we can

select the fidelity we need and truncate the series at the required point.

We ask ourselves how many pairs of photons do we need for a desirable squeezing level. In

Figure 2.2(a) we demonstrate the amount of squeezing as a function of the averaged number

of photons in the TMSV state. From this graph we can conclude that even the highest ever

recorded value of TMSV (Table 1.1) does not require a high mean number of excitations—

only two photons for –10 dB of squeezing. Although this could be misleading as we do not

know a standard deviation. For this we find the distribution of photons in TMSV state to

be

p(n) =
〈n 〉n

(〈n 〉+ 1)n+1
(2.24)
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Figure (2.2) (a) Dependence of squeezing level on the averaged number of photons in the
state. (b) Number of photons distibution in TMSV state for two squeezing levels: -10 dB
and -15 dB (marked on subfigure (a) with a corresponding color)

where averaged photon number is given by Equation (2.17). The distribution is presented

on a histogram 2.2(b), we can see that it does not have a sharp peak and we expect the

truncation to be at much higher values than the mean number of photons. Indeed to reach

fidelity of 95%, for the same –10 dB of squeezing, we need to keep up to 24 pairs of photons.

2.1.6 Two-mode squeezing with losses

It is well known that nonclassical states are especially prone to losses. They are inevitable

in any experiment, and could be split into several categories: optical losses, inefficiencies

of detectors, and discretization during the acquisition process. Achieving even –10 dB of

squeezing is a challenging task. Staying in the same easy model, we can gain insight about

the behaviour of TMS states in the presence of losses.

Let’s assume modes â and b̂ experience losses with coefficients ηa and ηb. We are able to

include losses via the beam-splitter model. The quantum mode of interest is lost proportional

to the transmittance of the beam-splitter
√

1− ηa. Instead of the lost mode a portion of

vacuum is admixed from the free port. For the sake of convenience we will stay in the

Heisenberg picture. The initial wavefunction for modes â and b̂ is in the TMSV state and
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operators evolve as follows:

â→
√

1− ηaâ+
√
ηaĉ, (2.25)

b̂→
√

1− ηbb̂+
√
ηbd̂. (2.26)

Here we have assumed that absorption happens independently for both modes. We can use

these modified operators to find quadratures (Eq. 2.21), which are measured by homodyne

detectors in the presence of losses:

Q̂θa =
1√
2

(√
1− ηaâ+

√
ηaĉ
)
e−iθa +

1√
2

(√
1− ηaâ† +

√
ηaĉ
†
)
eiθa , (2.27)

Q̂θb =
1√
2

(√
1− ηbb̂+

√
ηbd̂
)
e−iθb +

1√
2

(√
1− ηbb̂† +

√
ηbd̂
†
)
eiθb . (2.28)

Then variances of these quadratures are averaged over the two-mode squeezed vacuum state

and vacuum for the reservoir modes |φ0 〉 = |TMSV 〉 ⊗ | 0, 0 〉:

〈
∆Q̂2

± (θa, θb)
〉
φ0

=
〈 n̂a′ + n̂b′ 〉φ0 + 1± 〈 â′b̂′e−iθ + h.c. 〉φ0

2
. (2.29)

The nonzero terms in Equation (2.29) are

〈 â′b̂′e−iθ + h.c. 〉 =
√

(1− ηa)(1− ηb)〈 âb̂ 〉e−iθ + h.c.

〈 n̂a′ 〉 = (1− ηa)〈 n̂a 〉, 〈 n̂b′ 〉 = (1− ηb)〈 n̂b 〉.

As the result we have the quadrature variance:

〈∆Q̂2
±(θa, θb) 〉φ0 =

1

2

1 + ε2(1− ηa − ηb)∓ 2ε
√

(1− ηa)(1− ηb) cos(θa + θb)

1− ε2
. (2.30)

Losses effect both squeezing and antisqueezing levels as shown in Figure 2.3.
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Figure (2.3) Losses included as a simple beam-splitter model. (a) We show how the squeez-
ing and antisqueezing levels depend on losses η for the parametric gain ε = 0.81. The green
dashed line demonstrates η = 35% level. (b) Losses are close to experimental 35% for each
channel. Dashed lines demonstrate squeezing and antisqueezing levels without losses.

2.2 Optical parametric oscillator

As it is seen from the analysis above, the maximum reduction of the quantum noise 1−ε
1+ε

is limited by the nonlinearity coefficient, power of the pump, and length of the crystal. The

nonlinear coefficient is limited by crystal structure and is difficult to maximize. The pump

power can be increased up to the damage threshold of the crystal, e.g., ∼ 10 GW/cm2 for

BBO, but thermal effects may limit practical power even lower. Similar practical issues rise

with the length of the crystal: the non-uniformity in the growth limits the length to several

centimeters.

One way to overcome this problem is to use a multiple-pass configuration, where n passes

of the same pump pulse through the nonlinear media are employed. It is equivalent to n

actions of squeezer operator (2.4) on the original vacuum input. This increases the effective

nonlinearity and subsequent squeezing by n times, as though the media is n times longer.

The ultimate multiple-pass configuration is realized when the crystal is placed in an optical

resonator, which is resonant with signal and idler modes. Effectively this configuration is

equivalent to multiple pass with the number of passes equal to the finesse of the cavity. This

configuration—nonlinear crystal in a cavity—is usually called an optical parametric oscillator
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(OPO). Before describing the atomic OPO, we would like to describe the conventional two-

mode OPO and get some intuition on its operational regimes, which we will later relate to

the atomic OPO.

2.2.1 Equations of motion

The effective Hamiltonian for parametric amplification of two resonator modes below the

threshold can be written as [61]

Ĥ = ~ωca
†
1a1 + ~ωca

†
2a2 + i~

(
χ∗a1a2 − χa†1a

†
2

)
, (2.31)

where the phase-matching condition and energy conservation must hold. The gain is assumed

to be very broadband (χ(ω) is constant for large region of ω). The dynamics of optical modes

is described by Heisenberg equations of motion in a rotating frame with carrier frequency ωc.

The cavity is assumed to be a single-sided. We can write the Heisenberg-Langevin equations

for the cavity field operators:

ȧ1 = −χa†2 −
κ+ κin

2
a1 +

√
κa1,in +

√
κinF̂1, (2.32)

ȧ†2 = −χ∗a1 −
κ+ κin

2
a†2 +

√
κa†2,in +

√
κinF̂

†
2 , (2.33)

where κ corresponds to the energy decay per time unit through the input mirror, while κin cor-

responds to internal losses in the cavity, e.g. the energy decay of cavity mode per unit of time

via all process except leakage through the entering mirror, and F̂1,2 are two delta-correlated

Langevin noise operators, which are included to fulfill the fluctuation-dissipation theorem

[53]. The Langevin noise operators have the single component correlator 〈 F̂n,m(t) 〉 = 0 and

the two times correlator 〈 F̂n(t)F̂ †m(t′) 〉 = δnmδ(t − t′) and 〈 F̂ †n(t)F̂m(t′) 〉 = 0. We perform

a Fourier transform a1(t) =
∫
a1(ω)e−iωtdω, a†2(t) =

∫
a†2(−ω)e−iωtdω. The solution of this
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linear system of equations:

a1(ω) =

(
iω − κ+κin

2

)
∆d

(√
κa1,in(ω) +

√
κinF̂1(ω)

)
+

+
χ
(√

κa†2,in(−ω) +
√
κinF̂

†
2 (−ω)

)
∆d

, (2.34)

a†2(−ω) =

(
iω − κ+κin

2

)
∆d

(√
κa†2,in(−ω) +

√
κinF̂

†
2 (−ω)

)
+

+
χ∗
(√

κa1,in(ω) +
√
κinF̂1(ω)

)
∆d

, (2.35)

where the denominator is ∆d = |χ |2 − (iω − κ+κin

2
)2. We use input-output cavity coupling

relationships aout =
√
κa− ain to obtain the reflected field for both modes:

a1,out(ω) =− a1,in(ω)
|χ |2 + ω2 +

κ2−κ2
in

4
+ iωκin

∆d

+
χκa†2,in(−ω)

∆d

+
√
κκin

(iω − κ+κin

2
)F̂1(ω) + χF̂ †2 (−ω)

∆d

, (2.36)

a†2,out(−ω) =− a†2,in(−ω)
|χ |2 + ω2 +

κ2−κ2
in

4
+ iωκin

∆d

+
χ∗κa1,in(ω)

∆d

+
√
κκin

(iω − κ+κin

2
)F †2 (−ω) + χ∗F̂1(ω)

∆d

. (2.37)

This analytical solution could be used to find any correlators of interest, as an example we

find the intensity spectrum and variances of quadratures.

2.2.2 Observables

We can find some experimentally measured parameters, such as the energy spectrum of

generated photons in each mode for an input vacuum. For this purpose we first calculate
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the total number of photons in time domain within a single given cavity mode

〈n1(2),out 〉 = 〈 a†1(2),out(t)a1(2),out(t) 〉 =

=

∫∫
dω′dω〈 a†1(2),out(−ω

′)a1(2),out(ω) 〉vace
−i(ω′+ω)t. (2.38)

By taking into account the commutation relations [a1(2),out(ω), a†1(2),out(ω
′)] = δ(ω − ω′) be-

tween the annihilation and creation operators in frequency domain Equation (2.38) can be

simplified to

〈n1,out 〉vac = 〈n2,out 〉vac =

∫
dω

|χ |2 κ(κ+ κin)∣∣ |χ |2 − (iω − κ+κin

2
)2
∣∣2 . (2.39)

The resulted expression under the integral is the spectrum of generated photons at the output

of the given cavity mode. It follows a Lorentzian-like shape. The number of photons decreases

as a result of an increase of internal losses in the cavity. At the central frequency with respect

to a cavity ω = 0 this function has a singular point: κ+κin

2
= χ, which corresponds to an

infinite growth of number of photons (Fig. 2.4(a)). This is called a threshold condition for a

parametric oscillator. For further analysis the regime above the threshold requires including

dynamics of pumps. The generation of an infinite number of photons depletes the pumps

and χ does not stay constant.

Another observable we are considering characterizes nonclassical correlations of the emit-

ted photons. This nonclassicality is revealed in the variance of the generalized sum and

difference quadratures operator:

X̂±(ω, θ1, θ2) =
a1,out(ω)e−iθ1 + a†1,out(−ω)eiθ1 ± a2,out(ω)e−iθ2 ± a†2,out(−ω)eiθ2

√
2

, (2.40)

where phases θ1 and θ2 set the specific canonical quadrature. Experimentally it is controlled

by the phase of the local oscillator. Variance of this operator averaged over the vacuum state
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Figure (2.4) Spectrum of averaged number of photons (a) and squeezing spectrum (b)
depending on the gain χ. All frequencies are normalized by the cavity linewidth κ=1, gain
χ is frequency independent, no internal losses κin = 0. (a) Dashed line is a generation
near threshold κ

2
≈ χ. (b) Spectrum of squeezing for the phases θ1 + θ2 = 0. As the gain

approaches threshold κ
2
≈ χ squeezing becomes infinitely high with a narrow linewidth

is

〈∆X̂2
± 〉 =

(
|χ |2 + ω2 +

κ2−κ2
in

4

)2

+ κ2
inω

2 + κ2 |χ |2

|∆d |2
∓

∓ 2κ

|∆d |2

(
|χ |2 + ω2 +

κ2 − κ2
in

4

)
<e(χe−i(θ1+θ2))+

+ κκin

|χ |2 + ω2 + (κ+κin

2
)2 ∓ (κ+ κin)<e(χe−i(θ1+θ2))

|∆d |2
. (2.41)

and it depends on the phases of the quadratures we are interested in. Mathematically the

perfect squeezing is observed if the threshold condition is fulfilled, as an infinite number of

photons in the signal and idler modes is generated. The spectrum of generated photons and

squeezing spectrum narrows as gain approaches the threshold condition (Fig. 2.4).

In the previous system of equations χ(ω) is constant for a large region of ω, which is

not fulfilled in the case of atomic systems. Thus we modify χ to depend on ω and have a

finite bandwidth. The simplest two-level atom has an imaginary part of susceptibility with

a Lorentzian shape χ = χ0

(ω−ω0)2+γ2
0/4

. We phenomenologically include it into our solution,

Equation (2.39), instead of constant χ, then the spectrum of generated photons narrows
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Figure (2.5) Spectrum of averaged number of photons (a) and (c) and squeezing spectrum
(b) and (d). All frequencies are normalized by the cavity linewidth κ=1, gain χ is frequency
dependent. The dashed lines show normalized gain (blue) and cavity (green) linewidths. (a)–
(b) χ is a Lorentzian function of frequency ω with parameters γ0 = 0.3 and ε0 = 5 ·10−3. We
shift the central frequency of the gain with respect to the cavity to the right by an amount of
ω0 displayed in the legend. Internal losses are zero κin = 0. (c)–(d) Dependence on internal
losses. The central frequency of the gain is kept the same as for the cavity.
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down only to the gain bandwidth of the OPO (Fig. 2.5(a)). If we mismatch the central

frequencies of the cavity and gain spectrum it will result in asymmetric generation and a

significant decrease in generated rate, and an asymmetric squeezing spectrum (Fig. 2.5(b)).

2.3 Cavity quantum electrodynamics

To develop a theory of an atomic based optical parametric oscillator we first review the

basic quantum theory of light-atom interaction. Secondly, we apply this theory toN two-level

atoms interacting with the cavity mode. We analyze how the reflection of the input light from

the cavity changes depending on experimental conditions, such as detunings, cooperativity,

and intensity of the input field. This model enables us to estimate the number of atoms

interacting with the cavity from the reflection spectrum, which is a valuable parameter for

an atomic based optical parametric oscillator, as we will see later.

2.3.1 Light-atom interaction

We approximate the interaction of an atom with a single optical mode as an interaction

of a quantum two-level system and a bosonic mode. A two-level system as being equivalent

to spin 1/2 can be described by Pauli operators with canonical commutation relationship

[Ŝi, Ŝj] = 2iεijkŜk, where εijk is a Levi-Civita tensor and indices (i, j, k) are integer values

from one to three. The electromagnetic mode is described by creation and annihilation

operators [â, â†] = 1.

The energy of the atomic transition is assumed to be ~ωa, while the cavity has resonant

frequency ωc. The free Hamiltonian of noninteracting two-level atom and the cavity takes

the following form:

Ĥ0 = ~ωcâ
†â+

~ωa

2
Ŝz. (2.42)

The interaction can be decomposed into the cavity-atom coupling and interaction between
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cavity and external driving field. We consider a dilute gas, where atoms do not interact with

each other. The light-matter interaction is well described by the dipole approximation, if

the central wavelength of the electro-magnetic field is much larger than the size of an atom

[53, Ch. 5]. As an example, the typical sizes of alkali atoms are 3–5 Bohr radii, on the other

hand the transition wavelenths lie in the range of 670–850 nm, so the condition is fulfilled.

V̂ac ≈ −Ê · d̂ =

√
2π~ωc

V
(â†eiωct−ikr − âe−iωct+ikr)

(
d12Ŝ21 + d∗12Ŝ12

)
, (2.43)

here Ŝ21 = Ŝx+iŜy
2

= | 2 〉 〈 1 | and Ŝ12 = Ŝx−iŜy
2

= | 1 〉 〈 2 | are the atomic transition operators

and d12 = 〈 2 | r · e | 1 〉 is the matrix element of the electric dipole moment, e is a light

polarization vector, V is a cavity volume, r is a vector pointing from the origin to the atom.

The first step is to use the rotating-wave approximation (RWA), where energy non-

conserving operator products are disregarded [53, Ch. 5]. In particular, in Equation (2.43)

the terms proportional to â†Ŝ21 and âŜ12 are neglected, this is valid if an effective coupling

constant is smaller than the transition frequency g =
√

2π~ωc

V
| d12 | � ωa, which is the case

for optical dipole transitions. The best fiber-resonator achieves the coupling constant of 100

MHz [62], which is negligible in comparison with the optical transition.

Secondly, to make the Hamiltonian independent of oscillatory terms we can introduce a

rotating frame with the driving frequency ωd. The Hamiltonian in the rotating frame can

be derived through the following unitary transformation [59]:

Ĥrf = Û
(
Ĥ0 + V̂ac

)
Û † + i(∂tÛ)Û †, (2.44)

where this unitary transformation represents the rotations of atoms with the cavity frequency,

and rotations of the cavity with the external driving field:

Û = exp

(
iωct

2
Ŝz

)
exp

(
iωdtâ

†â
)
. (2.45)
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By applying the Baker-Campbell-Hausdorff formula

eiλĜÂe−iλĜ = Â+ iλ[Ĝ, Â] +
(iλ)2

2!
[Ĝ[Ĝ, Â]] + · · · (2.46)

and in the rotating frame the Hamiltonian has the form:

Ĥrf =
∆

2
Ŝz + δâ†â+ g(âŜ21e

ikr + â†Ŝ12e
−ikr), (2.47)

where ∆ = ωa−ωc, δ = ωc−ωd are the cavity-atom and cavity-driving field detunings. The

Hamiltonian (2.47) is solvable for a single atom [53] and its solution describes a plethora of

phenomena, such as vacuum Rabi splitting, collapse and revivals, etc.

2.3.2 N atoms

The Hamiltonian (2.47) is easily generalized for N identical atoms by summing over all

j-th indices. However, it is convenient to use collective spin operators Ŝ+ = 1√
N

∑N
j=1 e

ikrj Ŝj21

and Ŝz = 1
N

∑N
j=1 Ŝ

j
z , which obey commutation relations [63]:

[
Ŝ+, Ŝ−

]
= Ŝz,

[
Ŝ±, Ŝz

]
= ± 2

N
Ŝ±. (2.48)

The Hamiltonian (2.47) in these new notations is

Ĥ =
N∆

2
Ŝz + δâ†â+

√
Ng
(
âŜ+ + â†Ŝ−

)
. (2.49)

As we can see from this Hamiltonian, coherent interaction of N atoms provides an enhance-

ment for coupling strength by a factor of
√
N . The equations of motion for given operator

Â can be written taking into account dissipative effects such as spontaneous emission and
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losses in the cavity using a master equation type approach [64]:

d

dt
〈 Â 〉 = Tr

(
Â
dρ

dt

)
= Tr

(
Â
(
−i[Ĥ, ρ] + L̂ρ

))
, (2.50)

where the so-called Lindblad term L̂ρ represents atomic coherence decay due to radiative

spontaneous emission γ and cavity parasitic losses κin:

L̂ρ = γ
N∑
j=1

(
Ŝj12ρŜ

j
21 −

1

2

(
Ŝj21Ŝ

j
12ρ+ ρŜj21Ŝ

j
12

))
+ κin

(
âρâ† − 1

2

(
â†âρ+ ρâ†â

))
. (2.51)

It is a reasonable assumption for a dilute cold gas of neutral atoms such as rubidium or other

alkali atoms that we are able to limit decoherence by the radiative decay [65].

The cavity coupling with the driving field is expressed through the beam-splitter type of

interaction. A cavity with a high enough finesse can be treated through the input-output

formalism [61]. Taking into account the Lindblad term and the input-output relationship

for the cavity the equations of motion (2.50) for collective atomic coherence, population

operators, and cavity modes are derived with help of permutation under the trace without

any additional assumptions:

d〈 Ŝ− 〉
dt

= −i(∆− iγ/2)〈 Ŝ− 〉+ i
√
Ng〈 âŜz 〉 (2.52)

d〈 â 〉
dt

= −i(δ − i(κ+ κin)/2)〈 â 〉 − i
√
Ng〈 Ŝ− 〉+

√
κ〈 âin 〉 (2.53)

d〈 Ŝz 〉
dt

= −γ(〈 Ŝz 〉+ 1)− i 2g√
N

(
〈 âŜ+ 〉 − 〈 â†Ŝ− 〉

)
(2.54)

âin + âout =
√
κâ (2.55)

The presented equations describe interaction of the cavity mode with an ensemble of non-

interacting two-level atoms. For the exact solution we need to write an infinite system of

couple equations, as nonlinear terms 〈 âŜ+ 〉 and 〈 â†Ŝ− 〉 require additional equations, which

will not make the system complete. Below we truncate the chain under the assumption of a
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weak classical probe 〈 âŜ+ 〉 ≈ 〈 â 〉〈 Ŝ+ 〉, 〈 â†Ŝ− 〉 ≈ 〈 â† 〉〈 Ŝ+ 〉 [66]. It means, that we are

neglecting the entanglement between light and matter.

2.3.3 Weak probing

We probe atoms with a weak coherent field by sending it through the cavity mode. For the

classical field we change the field operators in the system of equations (2.52)–(2.55) for the

complex numbers and search for a steady-state solution (〈 â 〉 = α and 〈 âin(out) 〉 = αin(out)):

− i(∆− iγ/2)〈 Ŝ− 〉+ i
√
Ngα〈 Ŝz 〉 = 0 (2.56)

(−iδ − κ/2− κin/2)α− i
√
Ng〈 Ŝ− 〉+

√
καin = 0 (2.57)

− γ(〈 Ŝz 〉+ 1)− i 2g√
N

(
α〈 Ŝ+ 〉 − α∗〈 Ŝ− 〉

)
= 0 (2.58)

αin + αout =
√
κα (2.59)

We resolve this system of equations (2.56)–(2.58) and find the expectation values of atomic

operators:

〈 Ŝz 〉 = − 1
2g2|α |2

∆2+γ2/4
+ 1

and 〈 Ŝ− 〉 = −
√
Ngα

(∆− iγ/2)
(

2g2|α |2
∆2+γ2/4

+ 1
) . (2.60)

Substituting expressions (2.60) in the same system (2.56)–(2.58) we obtain an equation for

the field inside the cavity:

(iδ + κ/2 + κin/2)α− i Ng2

(∆− iγ/2)
(

2g2|α |2
∆2+γ2/4

+ 1
)α =

√
καin. (2.61)

The second term on the left hand side carries information about nonlinear susceptibility of

two-level atoms. This equation is nonlinear and could be linearized assuming a weak input
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light in comparison with atomic saturation intensity or Ic ∼ g2 |α |2 � γ2/2 3. The linearized

solution for the field inside a cavity is

α ≈
√
καin

(iδ + κ/2 + κin/2)− i Ng2

(∆−iγ/2)

. (2.62)

In the experiment we measure the intensity of the reflected field, for this reason we find

the field outside of the cavity in terms of the incident field by applying the input-output

formalism (2.59). After mathematical simplifications we can write the ratio between reflected

Iout ∝ |αout|2 and incident Iin ∝ |αin|2 intensities as:

Iout

Iin

= 1−
4C(εκ+1)

(1+4∆2/γ2)
+ εκ

(εκ+ 1)2

((
δ

κ+κin
− 4C∆

γ(1+4∆2/γ2)

)2

+ 1
4

(
4C

1+4∆2/γ2 + 1
)2
) (2.63)

where εκ = κin

κ
, C = Ng2

(κ+κin)γ
is a cooperativity parameter. The cooperativity parameter

characterizes the strength of collective atom-cavity interaction. Its definition could vary from

source to source by a multiplicative factor, although the essence stays: it is an enhancement

factor for emission into the cavity multiplied by a number of atoms of N . From its definition

we can say that it is a ratio between coherent and incoherent processes for an atom interacting

with cavity mode.

As we can see from denominator of (2.63) the presence of atoms acts in the following

manner:

1. Atomic spectral dispersion shifts the cavity resonance with respect to the bare one by

4C∆
γ(1+4∆2/γ2)

in the units of cavity linewidth κ.

2. Meanwhile, absorption of light by atoms broadens the cavity resonance by an additional

factor of C
1+4∆2/γ2 again in the units of κ.

3In the case of Rubidium 87 the saturation intensity is Isat = 4.484 mW/cm2 = 0.048 nW/µm2 [67]. The
light is focused into 100 µm, which is the cavity waist. Thus the saturation power is 1.4 µW. The result
should be additionally divided by a finesse of the cavity, which amplifies internal signal. In our experiment
finesse is 100 and the resulting power is 14 nW.
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The dependence of the reflected intensity on cooperativity is most clearly seen for the

resonance condition for atoms, cavity, and driving field (δ = 0, ∆ = 0) and for the small

internal losses (εκ� 1), then the ratio (2.63) is approximated by

Iout

Iin

≈ 1− 4C

(1 + C)2
. (2.64)

We could imagine that we vary cooperativity by adding more atoms into the cavity mode.

We begin with a bare cavity, when the total field is reflected (Iout = Iin). With an increase

of atom number the cooperativity reaches the value C = 1, when the input field fully enters

the cavity (Iout = 0). This is so-called impedance matching, which we discuss in more detail

in Section 4.4. With the further increase of atom’s number reflected field asymptotically

increases to Iin at large cooperativity. The same qualitative behaviour happens at nonzero

detuning and internal losses with the corresponding spectral corrections.

2.4 Two-mode squeezing in a cavity

In Section 2.2 we worked in a semiclassical model, where we kept the fields quantized in

order to study their nonclassical properties. Even richer dynamics are guided by a quan-

tized three-level atom, e.g., atomic population trapping [53], electromagnetically-induced

transparency (EIT) [68]. To quantify the effects of finite gain bandwidth and dispersion of

three-level atoms we have to construct a theory that includes both the atomic dynamics and

quantum properties of light.

2.4.1 System

We are considering an ensemble of N atoms with energetic levels forming a Λ scheme,

which is presented in Figure 2.6. Two metastable levels | 1 〉 and | 2 〉 are coupled to the

upper excited state | 3 〉 by two coherent pump fields with Rabi frequencies Ω1 and Ω2 and

central frequencies ωc1 and ωc2. These fields have different detunings ∆2 and ∆1 from the
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Figure (2.6) The Λ-type atomic structure with all fields involved in the FWM process. The
three-level atoms have two metastable levels | 1 〉 and | 2 〉. The excited state | 3 〉 decays
with the rates γ13 and γ23. Two optical pumps Ω1 and Ω2 induce FWM process, where
two quantum fields Â1 and Â2 are emitted into the cavity modes. FWM process is non-
degenerate, since two pumps have two different detunings ∆2 and ∆1 from the upper level.

atomic resonance and thus induce a non-degenerate FWM process. The two quantized fields

generated as a result have two new central frequencies ω1 or ω2, which in turn are two

longitudinal modes of one cavity. The annihilation operators of these intracavity fields are

Â1 and Â2.

Together with the creation of photons in the cavity modes, the atoms will transition

from level to level. To build our model we introduce an atomic projection operator Ŝjnm =

|n 〉j 〈m |j, which transfers the j-th atom from level |m 〉 onto level |n 〉. The summation

of this operator over all atoms in an ensemble gives the population of a level of interest∑
j Ŝ

j
nn and a macroscopic dipole moment

∑
j Ŝ

j
nm. Atoms interact with light via the dipole

interaction, as was discussed in Subsection 2.3.1, the dipole allowed transitions are | 1 〉 ↔ | 3 〉

and | 2 〉 ↔ | 3 〉. All of the above together with the rotating-wave approximation [53, Ch. 5]
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brings us to a Hamiltonian of the form:

Ĥ =~ω1Â
†
1Â1 + ~ω2Â

†
2Â2 + ~

∑
j

(
ω33Ŝ

j
33 + ω22Ŝ

j
22 + ω11Ŝ

j
11

)
+

+ ~
∑
j

(
Ŝj31(gj1Â1 + Ω2e

−iωc2t) + Ŝj32(gj2Â2 + Ω1e
−iωc1t)

)
+ h.c. (2.65)

The sum is taken over all atoms in the ensemble. In addition to the coherent dynamics

described by the Hamiltonian (2.65), incoherent processes take place. The state | 3 〉 can

radiatively decay to | 1 〉 and | 2 〉 with the corresponding decay rates γ13 and γ23, while the

coherence between levels | 1 〉 and | 2 〉 exhibits dephasing at the rate γ12.

2.4.2 Equations of motion

To include the decoherence we apply the Heisenberg-Langevin formalism [53, Ch. 9] and

derive corresponding equations of motion for the atomic system:

dŜj13

dt
=− (iω13 + γ13/2)Ŝj13 − i(g

j
1Â1 + Ω2(zj)e

−iωc2t)(Ŝj11 − Ŝ
j
33)

− i(gj2Â2 + Ω1(zj)e
−iωc1t)Ŝj12 + Φ̂j

13, (2.66)

dŜj23

dt
=− (iω23 + γ23/2)Ŝj23 − i(g

j
2Â2 + Ω1(zj)e

−iωc1t)(Ŝj22 − Ŝ
j
33)

− i(gj1Â1 + Ω2(zj)e
−iωc2t)Ŝj21 + Φ̂j

23, (2.67)

dŜj12

dt
=− (iω12 + γ12/2)Ŝj12 − i(g

∗j
2 Â

†
2 + Ω∗1(zj)e

iωc1t)Ŝj13

+ i(gj1Â1 + Ω2(zj))e
−iωc2tŜj32 + Φ̂j

12, (2.68)

In contrast to the Langevin noise operators used in description of the OPO (Section 2.2.1),

atomic Langevin noise operators Φ̂nm are the product of δ correlated bosonic bath operator

at zero temperature and corresponding atomic population operator. These operators are

introduced in order to conserve commutation relationships for the atomic operators at all

times and their properties are dictated by the fluctuation-dissipation theorem [53]. According
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to the theorem the operators have zero mean values, and their second-order correlators are

represented by the generalized diffusion coefficients Dnmkl: 〈 Φ̂i
nmΦ̂j

kl 〉 = δijδ(t−t′)Dnmkl [69].

These coefficients are calculated in the rotating frame introduced further and presented in

Appendix A.

For the intracavity field we write the quantum stochastic differential equations [61, Ch. 7]

in the same manner as it was done for the two-level atom (Subsection 2.3.2), where the cavity

losses κ enter together with a noise term in the form of the input field:

dÂ1

dt
= −(iω1 + κ/2)Â1 − i

∑
j

g∗j1 Ŝ
j
13 +
√
κÂin,1 (2.69)

dÂ2

dt
= −(iω2 + κ/2)Â2 − i

∑
j

g∗j2 Ŝ
j
23 +
√
κÂin,2 (2.70)

Since we have two strong control pumps and two cavity modes, it is natural to introduce

two atomic coherences and two cavity modes rotating with the central frequencies of the

corresponding pumps ωc1 and ωc2:

Ŝj13 = R̂j
13e
−iωc2t; Ŝj23 = R̂j

23e
−iωc1t; Ŝj12 = R̂j

12e
−i(ωc2−ωc1)t; (2.71)

Φ̂j
13 = F̂ j

13e
−iωc2t; Φ̂j

23 = F̂ j
23e
−iωc1t; Φ̂j

12 = F̂ j
12e
−i(ωc2−ωc1)t; (2.72)

Â1 = â1e
−iωc2t; Â2 = â2e

−iωc1t. (2.73)

We note that two detunings ∆1, ∆2 are the difference between pump frequencies ωc1, ωc2

and atomic resonances ω13, ω23. Physically they represent one photon detuning between

corresponding atomic transition and laser pumps. The detunings δ1,2 correspond to the

mismatch between cavity mode and pump frequencies acting on the same transition, meaning
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detuning from the Raman two-photon transition. These new notations are listed below:

∆1 = ω13 − ωc2; ∆2 = ω23 − ωc1; (2.74)

δ1 = ω1 − ωc2; δ2 = ω2 − ωc1; (2.75)

δ = ω21 − ωc2 + ωc1 = ∆1 −∆2. (2.76)

We rewrite the system of equations (2.66)–(2.70) in new notations and in the rotating

reference frame (2.71)–(2.73):

dâ1

dt
= −(iδ1 + κ/2)â1 − i

∑
j

g∗j1 R̂
j
13 +
√
κâin,1 (2.77)

dâ†2
dt

= −(−iδ2 + κ/2)â†2 + i
∑
j

gj2R̂
j
32 +
√
κâ†in,2 (2.78)

dR̂j
13

dt
= −(i∆1 + γ13/2)R̂j

13 − i(g
j
1â1 + Ω2(zj))(R̂

j
11 − R̂

j
33)− iΩ1(zj)R̂

j
12 + F̂ j

13 (2.79)

dR̂j
32

dt
= (i∆2 − γ23/2)R̂j

32 + i(g∗j2 â
†
2 + Ω∗1(zj))(R̂

j
22 − R̂

j
33) + iΩ∗2(zj)R̂

j
12 + F̂ j

32 (2.80)

dR̂j
12

dt
= −(iδ + γ12/2)R̂j

12 − iΩ∗1(zj)R̂
j
13 + iΩ2(zj)R̂

j
32 + F̂ j

12 (2.81)

We partially linearized the system of equations by neglecting nonlinear terms ∝ g1Â1Ŝ
j
21 and

∝ g2Â2Ŝ
j
12 in a comparison with terms Ω2Ŝ

j
21 and Ω1Ŝ

j
13, since the pumping Rabi-frequencies

are larger than the Rabi frequency of the generated quantum fields (Ωi � gi〈 Âi 〉) [70]. This

condition is fulfilled if the numbers of photons in each mode is smaller than |Ωi |2 / | gi |2,

that corresponds to ∼ 104 of photons being measured4. These terms become important for

larger signal and idler powers and are needed to be included for system operating near and

above the threshold, when the pump is depleted.

To simplify further analysis, we can consider a quasistationary regime for the atomic

population, where the atomic system is assumed in a steady state determined primarily by

pumps Ω1 and Ω2 (see Appendix C.1). Since we have two strong control pumps and two

4The parameters used in experiment: Rabi frequencies of pumping fields 2-10 MHz and | g1,2 | ∼ 1 kHz.
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cavity modes, we assume that the dynamics of the system is mainly dictated by the pumps

with other processes acting perturbatively. Assuming population difference operators to

be real numbers P̂ j
23 = 〈 R̂j

22 − R̂j
33 〉 and P̂ j

11 = 〈 R̂j
11 − R̂j

33 〉, the system of equations

become linear with respect to operator’s powers. We should note that the approximation is

valid, while the population difference is determined by the pumps, which corresponds to the

conditions |gj1|2〈 â
†
1â1 〉 � |Ω2|2 and |gj2|2〈 â

†
2â2 〉 � |Ω1|2 and excludes the above-threshold

regime. Operating in this regime allows us to find the analytic solution for the system of

equations (2.77)–(2.81), therewith the experiment on TMS runs in a quasistationary regime.

2.4.3 Collective operator approach

One way to prove validity of the given above approximation of a steady-state population is

to consider the exact numerical solution of the system (2.77)–(2.81). Unfortunately, the large

number of atoms (∼ 106) and nonlinearity makes such calculation problematic. However if

atoms experience the same coupling constants, pump Rabi frequencies, and detunings, we

can use collective operators in the similar fashion as it was done for a two-level atom in

Section 2.3.1. Such conditions can be realized in the travelling wave (ring) optical cavity

[71] with pumps having large beam cross-section to exclude nonuniformity of the pumping

beams. Following the analogy, we introduce normalized collective coherence operators and

normalized collective population operators:

R̂13 =
1√
N

N∑
j=1

R̂j
13e
−ik1rj , R̂32 =

1√
N

N∑
j=1

R̂j
32e

ik2rj , (2.82)

R̂12 =
1√
N

N∑
j=1

R̂j
12e
−i(k1−kc1)rj , R̂nn =

1

N

N∑
j=1

R̂j
nn. (2.83)

Moreover, we assume the phase-matching approximation

ei(k2−kc2)rj , ei(k2−kc1)rj , ei(kc1−k1)rj , ei(k2−kc1)rj ≈ 1. (2.84)
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All these assumptions ensure that atoms interact collectively (or coherently) with optical

fields. Under these conditions FWM will generate the maximum number of photons in

two quantum modes, while the inhomogeneities and non-ideal phase matching decreases the

generation rate. Thus with these assumptions being made we are considering the upper

bound of generated photons for a system with a given cooperativity. Even in this situation

we prove to have a steady-state population unperturbed by the generated fields after the

transient time. The transient time is the time needed for the system to converge to a steady-

state population.

We arrive at the system of equations that takes similar form as equations (2.77)–(2.81),

only written for collective operators, and is given in Appendix C.2. All these equations

are parameterized by number of atoms N , although we use cooperativity as the parameter,

which is directly proportional to N (Ci =
Ng2

i

κγi3
).

κ γ13,γ23 γ12 g1, g2 Ω1 Ω2 ∆1 ∆2

30 6 0.1 10−3 3.53 10 90 30

Table (2.1) Parameters used for numerical simulation of the transient populations regime.
All values are in MHz/(2π), cooperativity is C = 10.

Numerical simulations are depicted in Figure 2.7. They demonstrate that in the range of

low to moderate cooperativities the discrepancy between the exact solution and the station-

ary approximation is negligible and our approximation is valid. Besides proving our hypoth-

esis the numerical solution provides us with an estimate of the transient time, which depends

on the pump power and the detuning roughly as an optical pumping time ∼
(

Ω2
1

∆2
+

Ω2
2

∆1

)−1

.

Taking into account the results of collective operator simulations we may proceed further

with the model for single atom equations (2.77)–(2.81) and stationary population to get

the analytical treatment of the emitted light and take into account inhomogenities of the

ensemble.
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Figure (2.7) (a) Dynamics of the atomic populations R11(t), R22(t) for numerical solution
of equations (C.8–C.15) and the respective steady-state solutions Rs

11, Rs
22 used in further

analysis. The parameters are summarized in Table 2.1. (b) Difference between numerical and
analytic solutions as a function of cooperativity parameter taken at the time after evolution
stops (time > 50µs). Assuming the same cooperativity C = 10 for both cavity modes.

2.4.4 Intracavity field spectrum

For further analysis we apply the Fourier transform â1(t) =
∫
ã1(ω)e−iωtdω, â†2(t) =∫

ã†2(−ω)e−iωtdω 5. Remarkably, the assumption of a constant population leads to a delta

function in the frequency domain. However, if the pump’s intensity is not high Ω2
1,2/∆2,1 �

γ13 +γ23 the population exhibits fluctuation with a characteristic time of (γ13 + γ23)−1. Thus

instead of a delta function a Lorentzian spectrum can be used I(ω) = Γ
ω2+Γ2 .

We assume homogeneity of our atomic cloud and pumps, so both coupling constants and

pumping strengths are uniform over an atomic cloud: gj1,2 = | g1,2 | eik1,2rj and Ω1,2(zj) =

|Ω1,2 | eikc1,c2rj . We have explicitly included wavevectors of the pumping fields kc1,c2 and the

cavity modes k1,2 to monitor an effect of the phase-matching conditions on the generation

process. Equations (2.79)–(2.81) are resolved to find coherences, which are substituted into

equations (2.77)–(2.78). The final system of equations for two intracavity fields in the Fourier

5Tilde symbolizes the dependence on ω. Throughout the section we use the short substitution: ã1(ω)→
ã1, ã2(−ω)→ ã2, etc.
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domain is

−
(
i(δ1 − ω) + κ/2 +

κC1〈P13 〉
∆̃(ω)/γ13

)
ã1 + χ̃(ω)φ 〈P23 〉ã†2 + L̃1 +

√
κãin,1 = 0, (2.85)(

i(δ2 + ω)− κ/2− κC2〈P23 〉
δ̃2(ω)/γ23

c̃(ω)

)
ã†2 + χ̃(ω)φ∗〈P13 〉ã1 + L̃2 +

√
κã†in,2 = 0, (2.86)

where the parameters are

C1 =
∑
j

| g1 |2

κγ13

, C2 =
∑
j

| g2 |2

κγ23

, c̃(ω) = 1− |Ω2 |2

δ̃1(ω)δ̃2(ω)
+
|Ω1 |2 |Ω2 |2

∆̃(ω)δ̃2
1(ω)δ̃2(ω)

, (2.87)

∆̃(ω) = i(∆1 − ω) + γ13/2 +
Ω2

1

i(δ − ω) + γ12/2 +
Ω2

2

−i(∆2+ω)+γ23/2

, (2.88)

δ̃1(ω) = i(δ − ω) + γ12/2 +
Ω2

2

γ23/2− i(∆2 + ω)
, δ̃2(ω) = γ23/2− i(∆2 + ω), (2.89)

δ̃3(ω) = γ12/2 + i(δ − ω) +
Ω2

1

γ13/2 + i(∆1 − ω)
. (2.90)

C1 and C2 are collective atomic cooperativities on transitions | 1 〉 → | 3 〉 and | 2 〉 → | 3 〉,

respectively. Detunings (2.88)–(2.90) represent the sum of experimental detunings and AC-

Stark shifts induced by applied pump fields, which scale as ∝ Ω2/∆. Together with these

parameters we introduced functions L̃1,2 = F̃1,2 + δF̃1,2, which characterize uncorrelated
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spontaneous scattering, and χ̃ is an effective nonlinearity akin to one from Section 2.2.

χ̃(ω) =
| g1 | | g2 | |Ω1 | |Ω2 |
δ̃1(ω)δ̃2(ω)∆̃(ω)

, φ =
∑
j

ei(kc1+kc2−k1−k2)rj , (2.91)

F̃1 =
| g1 | |Ω2 |

∆̃(ω)

(
−〈P13 〉+

|Ω1 |2 〈P23 〉
δ̃1(ω)δ̃2(ω)

)∑
j

ei(kc2−k1)rjI(ω), (2.92)

F̃2 = −| g2 | |Ω1 |
δ̃2(ω)

(
c̃(ω)〈P23 〉 −

|Ω2 |2 〈P13 〉
∆̃(ω)δ̃1(ω)

)∑
j

ei(k2−kc1)rjI(ω), (2.93)

δF̃1 =
∑
j

|g1|e−ik1rj

(
δ̃1(ω)F̂ j

13(ω) + |Ω1Ω2|
δ̃2(ω)

ei(kc1+kc2)rj F̂ j
32(ω)− i|Ω1|eikc1rj F̂ j

12(ω)
)

(γ13/2 + i (∆1 − ω))
(
δ̃1(ω) + |Ω1|2

γ13/2+i(∆1−ω)

) , (2.94)

δF̃2 =
∑
j

|g2|eik2rj

(
i|Ω2|e−ikc2rj F̂ j

12(ω) + δ̃3(ω)F̂ j
32(ω) + e−i(kc1+kc2)rj |Ω1Ω2|

γ13/2+i(∆1−ω)
F̂ j

13(ω)
)

δ̃2(ω)
(
δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

)
(2.95)

The nonlinearity coefficient χ̃ describes a four-photon process [72], where absorption of one

photon from each pump is accompanied by emission of idler and signal photons. The FWM

is a phase-sensitive process that is reflected in the multiplier φ, which contains information

on phase matching. The sum over all atoms leads to a sharp sinc function with a maximum

set by the phase-matching condition (kc1 + kc2− k1− k2)rj = 0. We explicitly demonstrate

this in Subsection 5.1.2 together with estimates for three different pump configurations. Here

we are limiting our discussion to the preferable direction of photon emission. If both pumps

have the same wavevector direction, then the directions for signal and idler photons are

identical too. When the pumps are counter-propagating, the counter-propagating signal and

idler photons are emitted with collective enhancement. If we assume that phase matching is

held and coupling constants are only different by a coefficient α = | g2 | / | g1 |, the effective

nonlinearity can be expressed in more experimentally accessible parameters:

χ̃ ≈ κγ13αC1 |Ω1 | |Ω2 |
δ̃1(ω)δ̃2(ω)∆̃(ω)

(2.96)

41



From equations (2.92)–(2.93) we conclude that terms F̃1,2 represent the Rayleigh scatter-

ing, i.e. reemission of pump photons into the cavity mode. In other words, after the pump

with frequency ωc1 (ωc2) is absorbed by an atom, it emits a photon with the same frequency

ωc1 (ωc2). On the other hand, since the pump is detuned from the cavity resonance by an

amount of ∆1 −∆2, the Rayleigh emission is suppressed. One more condition for collective

enhancement of this process is phase matching: the pumps and generated photons should

propagate in the same direction kc1 = k2 and kc2 = k1.

2.4.5 Optimization of generated fields

The solution of the linear system of equations (2.85)–(2.86) is

ã1 =
χ̃ 〈P23 〉

(√
κã†in,2 + L̃2

)
+
(√

κain,1 + L̃1

)(
κC2

δ̃2/γ23
c̃〈P23 〉+ κ

2
− i(δ2 + ω)

)
(
κC1〈P13 〉

∆̃/γ13
+ κ

2
+ i(δ1 − ω)

)(
κC2

δ̃2/γ23
c̃〈P23 〉+ κ

2
− i(δ2 + ω)

)
− 〈P23 〉〈P13 〉χ̃2

(2.97)

ã†2 =
χ̃ 〈P13 〉

(√
κãin,1 + L̃1

)
+
(√

κa†in,2 + L̃2

)(
κC1〈P13 〉

∆̃/γ13
+ κ

2
+ i(δ1 − ω)

)
(
κC1〈P13 〉

∆̃/γ13
+ κ

2
+ i(δ1 − ω)

)(
κC2

δ̃2/γ23
c̃〈P23 〉+ κ

2
− i(δ2 + ω)

)
− 〈P23 〉〈P13 〉χ̃2

(2.98)

This system of equations takes the same form as the derived system of equations for the OPO

(2.34)–(2.35), although in this case the dynamics of the system includes the response of the

atomic system. The analogy with the OPO is very close, except that now the parametric

gain χ(ω) has limited bandwidth and is different for two fields by a population difference.

Furthermore, each cavity mode exhibits an additional refractive index change and absorption

due to the atoms. The refractive index manifests itself as a shift of the resonant frequency

by ∼ κC1∆1〈P13 〉
(∆2

1+γ2
13/4)/γ13

, while absorption introduces additional losses ∼ κC1γ13〈P13 〉
(∆2

1+γ2
13/4)/γ13

and hence

broadens the cavity linewidth.

As was discussed in Section 2.2, to obtain maximum squeezing the intracavity losses

should be minimized. Together with that the OPO should operate close to the threshold

with symmetric gain for both modes. Thus in theory we optimize the squeezing by finding

the global maximum in the range of accessible parameters. However in the experiment some
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parameters are not easy to control (e.g., cooperativity) and some are fixed (e.g., cavity

linewidth), the only parameters we can manipulate are the power of the pumps and their

detunings. Taking into account these principles, we can roughly formulate a strategy for

getting maximal squeezing for the atomic OPO. For the given cooperativities C1 and C2 and

the cavity linewidth κ, the following conditions should be fulfilled:

1. Minimizing losses for both modes κC1〈P13 〉
∆̃(ω)/γ13

and κC2〈P23 〉
δ̃2(ω)/γ23

c̃(ω)

2. Minimizing disbalance in gain by minimizing | 〈P23 〉 − 〈P13 〉 |

3. Maximizing the OPO gain 〈P23 〉〈P13 〉χ̃2

2.4.6 Observables

We once again resort to the input-output formalism (aout =
√
κa− ain) to find the field

outside of the cavity. To simplify representation we introduce new notations:

C̃1 =

(
κC1〈P j

13 〉
∆̃/γ13

+
κ

2
+ iδ1

)
and C̃2 =

(
κC2

δ̃2/γ23

c̃〈P j
23 〉+

κ

2
− iδ2

)
, (2.99)

thus:

ãout,1 =
√
κ
χ̃ · 〈P23 〉

(√
κã†in,2 + L̃2

)
+
(√

κãin,1 + L̃1

)
C̃2

C̃1C̃2 − 〈P23 〉〈P13 〉χ̃2
− ãin,1 (2.100)

ã†out,2 =
√
κ
χ̃ · 〈P13 〉

(√
κãin,1 + L̃1

)
+
(√

κã†in,2 + L̃2

)
C̃1

C̃1C̃2 − 〈P23 〉〈P13 〉χ̃2
− ã†in,2 (2.101)

Knowing this, we can construct expressions for observables and second-order correlators of

interest. The spectrum of the number of generated Stokes and anti-Stokes photons in each
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channel is given by

〈 n̂out,1(ω) 〉 = κ
| χ̃ |2 〈P23 〉2κ+

∣∣∣ χ̃〈P23 〉F̃2 + F̃1C̃2(ω)
∣∣∣2∣∣∣ C̃1(ω)C̃2(ω)− 〈P23 〉〈P13 〉χ̃2

∣∣∣2 , (2.102)

〈 n̂out,2(ω) 〉 = κ
| χ̃ |2 〈P13 〉2κ+

∣∣∣ χ̃〈P13 〉F̃1 + F̃2C̃1(ω)
∣∣∣2∣∣∣ C̃1(ω)C̃2(ω)− 〈P23 〉〈P13 〉χ̃2

∣∣∣2 . (2.103)

We can see that contribution into the intensity can be decomposed into the “useful” coherent

∝ | χ̃ |2 〈Pi3 〉2 and incoherent parts with F̃1,2. Moreover the incoherent part is decomposed

into the spontaneous emission from the “real” level | 3 〉 and incoherent Raman scattering.

The former effect arises as a contribution from the Langevin noise operator and its emission

goes into the same mode as the signals from four-wave mixing. The details of the noise

contribution are presented in Appendix A.1.

We demonstrate the behaviour of the spectrum of generated photons in two channels

in Figure 2.8. For small pump powers Ω1 most of the population stays on level | 2 〉 and

the generated signal in the second channel is smaller than in the first (Fig. 2.8(a)). With

an increase of pump power the population on two levels evens, and the generation is close

in both modes (Fig. 2.8(b)). Even higher pumping power unbalances signals, so the signal

mode in the second exceeds the signal in the first (Fig. 2.8(c)–(d)).

κ γ13,γ23 γ12 Ω2 ∆1 ∆2

30 6 0.1 6 80 20

Table (2.2) Parameters used for calculations if not stated otherwise; all values are in
MHz/(2π), cooperativity is C = 15.

2.4.7 Threshold condition

It is well known [61], that OPO has a feature of coherent generation once the gain

exceeds the losses within the cavity (Fig. 2.9). This point is usually called the threshold
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(a) (b)

(c) (d)

Figure (2.8) Spectrum of number of photons generated in each quantum mode via formulas
(2.102)–(2.103). The left axis (dark blue solid) represents number of photons in the first
mode, the right axis (red dashed)–in the second. The parameters used in the calculations
are given in Table 2.2. Power of the first pump is varied for (a)–(d) and written in the left
upper corner.
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or coherent generation. At the threshold and above, the generated Stokes and anti-Stokes

photons stimulate subsequent emission into the same modes, this amplifies and narrows the

output radiation.

In Figure 2.9(b) we plot the difference between the gain and losses to reveal regions of

the above threshold generation. The region shifts to higher frequencies due to AC-Stark

shift and it broadens with an increasing power. In Figure 2.9(b) we can see narrowing of

the spectrum with an increasing number of photons, as it was demonstrated earlier for the

OPO model.

Despite the fact that our model is valid for description below the threshold, we can still

find this point. According to (2.100)–(2.101) at the threshold the common denominator of

equations equals zero, which corresponds to phase transition towards coherent generation:

(
κC1〈P13 〉

∆̃/γ13

+
κ

2
+ i(δ1 − ω)

)(
κC2

δ̃2/γ23

c̃〈P23 〉+
κ

2
− i(δ2 + ω)

)
− 〈P23 〉〈P13 〉χ̃2 = 0,

(2.104)

In general, the equation (2.104) can be solved numerically as the function of experimen-

tal parameters to check the existence of the threshold at the given frequency component.

However condition of double Raman resonance fixes cavity frequency detunings ω = δ1,

δ1 = −δ2 = δ, and one pumps’s detuning ∆1 = ∆2 + δ. From symmetrical consideration

we may notice, that better squeezing occurs for equal gain for both modes, this dictates the

equal population on level | 1 〉 and | 2 〉 (P13 = P23 = 1/2). Further assumption such as slow

coherence decay γ12 ≈ 0 and relatively large single photon detuning ∆2 > γ13, γ23 helps to

derive simpler expression for threshold conditions:

(
C1

∆̃/γ13

+ 1

)(
κC2

δ̃2/γ23

c̃+ 1

)
−
(
χ̃

κ

)2

= 0, (2.105)
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(a) (b)

Figure (2.9) (a) Spectrum of difference between gain and loss as a dependence on power
of the first power. If the quantity coded by the color is more than zero then gain exceeds
losses and vice versa. (b) Spectrum of photons generated in one mode depending on the
power of the first pump as the system approaches the threshold. For both calculations we
use parameters from Table 2.2 and C = 15 and Ω2 = 6.

taking into account the simplification of the detuning we arrive at the expression:

(
Ω2

1

Ω2
2∆2

− 1

∆2 + ω

)
=

∆2

C1C2γ13γ23

. (2.106)

Remarkably the expression is similar to that for the N -level atomic optical parametric oscil-

lator [73], where cooperativity is replaced by an ensemble’s optical depth.

2.5 Conclusion

We develop the model for describing four-wave mixing in the Λ atomic system, where

both optical fields and atoms are treated quantum-mechanically. This model is similar to

the optical parametric oscillator having both narrow band gain and arbitrary portion of

losses and gain in each channel. Our model enables us to find the properties of the emitted

Stokes and anti-Stokes photons, such as intensity and second-order correlators, and find the

appropriate values of the control parameters.

The simulation predicts that four-wave mixing exhibits three regimes. In the first regime,
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when the far detuned pump’s intensity is large, the strong Stokes generation is accompanied

by an order of magnitude weaker anti-Stokes emission. For the second, when the opposite

pump is stronger, the picture reverses, i.e., anti-Stokes emission could be a few orders of

magnitude more powerful than the Stokes. Moreover, in both cases the spectrum of emitted

photons becomes narrower than the Raman emission linewidth. The third regime is found

for the narrow range of pump powers and detunings, when the generated number of photons

for two modes is balanced, and the conditions are preferable for squeezing. This regime

corresponds to the symmetrical OPO and utilized in experiment. This agrees with the

intuitive idea, that the gain for both modes of optical parametric oscillator operating below

the threshold should be balanced.
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Chapter 3

Darkness of two-mode squeezed light

in the Λ-type atomic system

The concept of dark state is used intensively for describing a plethora of phenomena, to

name a few: sub-recoil optical cooling [74], coherent population trapping, electromagnetically

induced transparency [53], and slow and stopped light [75]. The mentioned phenomena

usually take place in an atomic system with Λ transitions between the ground | 1 〉, metastable

| 2 〉 and the excited | 3 〉 levels. The dark state is a special superposition of two ground levels

[53]. Due to destructive quantum interference, the total dipole moment of the interaction

with two phase-locked light fields on the optical transitions vanishes. Dark states, discovered

initially in atomic physics, have recently been observed in circuit quantum electrodynamics

[76, 77] and semiconductors [78, 79].

In the present work we demonstrate the existence of a set of optical dark (OD) states

that are distinct from the states described above, as they are fully separable from the atomic

state. These states require all atoms to be in the ground level, in contrast to a prepara-

tion of atomic superposition for a coherent population trapping. We explicitly show that

while propagating through the resonant absorbing medium OD states do not evolve. Rather

surprising, these belong to a family of nonclassical, entangled states or more specifically to
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Figure (3.1) a) The atomic level scheme. The two quantum modes â and b̂, in which the
OD state is present, are in two-photon resonance with the strong classical fields Ωa and Ωb,
respectively. b) Generating the two-mode squeezed OD state | 0B, 0D 〉 from vacuum input
| 0a, 0b 〉 in two atomic samples. Left: scheme of the experiment and energy level diagrams.
The coupling constants and the populations of the two samples are exchanged with respect
to the two ground states. Right: Exchange of entanglement among the optical modes and
atomic coherences. Red circles symbolize the Bogoliubov transformation that relate the pairs
of optical modes (â, b̂) and (B̂, D̂). Shading marks the modes that are in the vacuum state,
infinity symbols denote the TMSV state. Top: at the entrance of the first sample, the atomic
ensembles and the physical modes â and b̂ are in their ground states, which means that the
Bogoliubov modes B̂ and D̂ are TMSV entangled as per Eq. 3.8. Center: the interaction
in the first sample swaps the optical Bogoliubov mode B̂ and the atomic coherence Ŝ12.
Bottom: in the second sample, the contents of D̂ and Ŝ ′12 are swapped. Now the atomic
samples are TMSV entangled while the Bogoliubov modes are in the vacuum state, which
means that the physical light modes are in the TMSV state as well according to Eq. 3.6.

the two-mode squeezed states, whose quantum properties are vulnerable to attenuation [60].

While propagating through an attenuator (a lossy channel), the quantum features of an op-

tical state are shared with the environment and lost when the environment is traced over.

Here we demonstrate that TMSV can not only propagate through an attenuating medium

without being affected by losses, but in fact is created thanks to these losses.

3.1 System

Similar to the atomic dark state, the OD state arises in Λ-shaped atomic systems. Two

hyperfine levels | 1 〉 and | 2 〉 are coupled in pairs with coherent pumps and quantum modes
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(Fig. 3.1(a)), where two pumping fields, having Rabi-frequencies Ωa and Ωb, are in two-

photon resonance with the corresponding quantum fields, called signal and idler. Annihila-

tion (creation) operator âk (â†k) of optical field is introduced inside the ’large enough’ optical

resonator that its modes are closely spaced and become quasi-continuous [80]. As the result

the discrete commutation relationship can be replaced with continuous: [âk, â
†
k′ ] = δkk′ →

δ(k − k′) 1.

In contrast with the previous chapter, where the quantum fields were localized in-

side an optical cavity, here we consider a one-dimensional system, where the fields prop-

agate along the z direction and an atomic ensemble has a cigar-shape with length L along

this z axis. To take into account the propagating nature of the fields it is convenient

to introduce the continuous spatial Fourier transform of annihilation (creation) operators

â(z) = (2π)−1/2
∫
âke

ikz dk. Thus for a given problem we consider two quantum fields,

which are defined by annihilation operators â(z) and b̂(z) and obey commutation relations

[â(z), â†(z′)] = [b̂(z), b̂†(z′)] = δ(z − z′).

The ensemble is comprised of N atoms and initially is polarized to one of the lowest levels

| 1 〉. The atomic system is described by collective continuous atomic operators Ŝnm(z) =

L
N

∑N
j=1 Ŝ

j
nmδ(z− zj), where the single atom operator Ŝjnm transfers the jth atom from level

|m 〉 to |n 〉. The commutation relations for the collective operators are
[
Ŝnm(z′), Ŝmn(z′′)

]
=

L
N
δ(z′ − z′′)

(
Ŝnn(z′)− Ŝmm(z′)

)
.

The interaction Hamiltonian driving the system from the above in the RWA is [81, 70]:

Ĥ =~n0

∫ L

0

{(
g31â(t, z)e−iωat + Ωbe

−iωΩb
t
)
Ŝ31(t, z)

+
(
g32b̂(t, z)e

−iωbt + Ωae
−iωΩa t

)
Ŝ32(t, z) + h.c.

}
dz, (3.1)

where n0 = N/L is a linear atomic density, g31 and g32 are photon-atom coupling constants

for the corresponding optical transitions [82], ωa,b and ωΩa,b are the carrier frequencies of the

1where δkk′ is the Kronecker delta and δ(k − k′) is Dirac delta-function
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quantum and control fields, respectively.

We are assuming that the signal and control fields are far detuned from the excited

state | 3 〉 (i.e., ∆a,b � γ13, γ23,Ωa,b), where γ13 and γ23 are the spontaneous decay rates

from the excited level | 3 〉. This allows us to adiabatically eliminate level | 3 〉. Moreover, if

∆a,b > ω21, then two quantum fields experience an almost identical dispersion. This ensures

the phase-matching condition, so that the both modes â and b̂ experience the same dispersion

throughout the sample. With these approximations being made we arrive at the following

effective interaction Hamiltonian:

V̂eff = ~n0

∫ L

0

(
g∗aâ
† + gbb̂

)
Ŝ12 dz + h.c., (3.2)

where ga = g31Ω∗a
∆a

and gb =
g32Ω∗b

∆b
are the effective coupling constants of the signal and idler

modes with the spin wave. Without loss of generality we choose the coupling constants in

a way that |gb| < |ga|, hereafter we set the phase convention for â and b̂ to be chosen such

that ga and gb are real and positive.

Equation (3.2) is valid if the respective control and quantum field pairs are in a two-

photon resonance with the ground states that are ac Stark shifted by the control fields,

which we assume to be the case. Another important assumption is that the majority of the

atomic population is in state | 1 〉, which is valid on time scales that are small compared

to the inverse optical pumping rate associated with the control field Ωb:
|Ωb |2γ3

∆2
b
t � 1. In

this case, n0[Ŝ12(z′), Ŝ21(z′′)] ≈ δ(z′ − z′′) the Hilbert space associated with the collective

atomic excitation becomes isomorphic to that of the harmonic oscillator under the Holstein-

Primakoff transformation [82, 83].
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3.2 Optical dark state

To reveal an appearance of the OD state, we perform a Bogoliubov transformation of the

signal and idler modes into new modes B̂ and D̂:

B̂ = α−1
0 (â+ εb̂†) and D̂ = α−1

0 (b̂+ εâ†), (3.3)

where α0 =
√

1− | ε |2 and ε = gb/ga. Under this transformation the Hamiltonian (3.2) takes

form:

V̂eff(t) = ~α0gan0

∫ L

0

(
B̂†Ŝ12 + B̂Ŝ†12

)
dz. (3.4)

We notice that the atomic system is coupled only to the “bright” mode B̂, while the Hamil-

tonian commutes with mode D̂ ([D̂, V̂eff] = 0). Obviously, the field in the “dark” mode D̂ is

decoupled from the interaction and subsequently from evolution. We can easily find the full

class of eigenvectors of this Hamiltonian with the zero eigenvalue:

V̂eff(t) | 0B,ΦD 〉 ⊗ |G 〉at = 0, (3.5)

where |ΦD 〉 is an arbitrary state of dark mode D̂ and |G 〉at = | 11...1j...1N 〉 is a collective

atomic ground state. Thus atoms prepared in the ground state will not interact with an

optical state | 0B,ΦD 〉, where the dark mode is not necessarily in the vacuum state. We call

this state an optical dark state.

Here I would like us to stop and spotlight the difference between the proposed Hamil-

tonian and the commonly used FWM Hamiltonian for generation of TMSV [15, 27]. The

effective parametric Hamiltonian (Section 2.2) excludes the media from the evolution, limit-

ing its effect to the nonlinear susceptibility. It results in an exponential growth of squeezing

as the field is propagating through the sample (albeit with vulnerability to losses). In the

current chapter keeping the dynamics of atomic state and polarizing the atomic population
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to one ground level we arrive to the beam-splitter type Hamiltonian (3.4). In Holstein-

Primakoff approximation the beam-splitter form of coupling defined by the Hamiltonian

(3.4) in an optically deep medium leads to the swapping of the states between the optical

mode B̂ and the atomic coherence Ŝ12. The decay of atomic coherence will dissipate the

energy from the system bringing the optical state into darkness [84].

3.3 Darkness of two-mode squeezed state

Of particular interest among the OD states is the vacuum state | 0B, 0D 〉 of modes B̂ and

D̂. Because the original modes (â, b̂) are related to (B̂, D̂) via the Bogoliubov transformation,

the state | 0B, 0D 〉 in the eigenbasis of (â, b̂) is a TMSV. Analogously to definitions given in

Section 2.1, we can write the vacuum state:

| 0B, 0D 〉 = exp
[
−r(â†b̂† − âb̂)

]
| 0a, 0b 〉 = α0

∑
n

(−ε)n |na, nb 〉 , (3.6)

where r = 1
2

log 1−ε
1+ε

is the squeezing parameter and |na,b 〉 denotes number states. This

state is characterized by the mean photon numbers 〈 n̂a 〉 = 〈 n̂b 〉 = ε2/α2
0 and the posi-

tion/momentum quadrature correlation

〈 (Xa ±Xb)
2 〉 = 〈 (Pa ∓ Pb)2 〉 = e±2r =

1± ε
1∓ ε

, (3.7)

with ε = r = 0 corresponding to the standard quantum limit [85]. The squeezing becomes

infinite in theory for ε→ 1.

State (3.6) coincides with the vacuum state | 0a, 0b 〉 if ε = 0. This case corresponds to the

idler control field being absent, so in accordance with interaction (3.4) the signal field can

experience Raman absorption, decaying into the vacuum state while propagating through

the sample. On the other hand, for ε 6= 0, the physical vacuum is not an OD state. To see

this, we notice that this state is two-mode squeezed in the basis of the Bogoliubov bright
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and dark modes:

| 0a, 0b 〉 = exp
[
r(−B̂D̂ + B̂†D̂†)

]
| 0B, 0D 〉 . (3.8)

If this state is injected into our atomic sample, the bright mode will be absorbed by the

atoms, decaying into | 0B 〉. With the atomic coherence dissipating into the environment,

mode D̂ becomes thermal, with the quadrature variance 〈X2
D 〉 = 〈P 2

D 〉 = 1
2

cosh 2r = 1+ε2

1−ε2 :

ρ̂B,D = |α0 |2 | 0B 〉 〈 0B | ⊗
∑
n

ε2n |nD 〉 〈nD | . (3.9)

State (3.9), albeit unpure, is two-mode squeezed in the basis of modes â and b̂ by no more

than a factor of 2 with respect to the standard quantum limit:

〈 (Xa ±Xb)
2 〉 = 〈 (Pa ∓ Pb)2 〉 (3.10)

=
1

2
e∓2r(1 + cosh 2r) = (1± ε)−2.

This squeezing can be experimentally observed by performing a homodyne measurement on

the signal and idler modes upon exiting the sample.

The fact that an entangled state remains unchanged while propagating through an ab-

sorbing medium, while the vacuum state loses its purity and becomes entangled, is highly

counterintuitive. We explain this by observing that the interaction of the light with the

environment occurs via the bright mode B̂. The pair of modes (B̂, D̂) therefore defines the

decoherence-preferred basis. States that are entangled in this basis do decohere. However,

because this basis is itself entangled in terms of the physical modes (â, b̂), this decoherence

presents itself as growth of entanglement of the latter modes.
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3.4 Optical dark states in the presence of dissipation

To explicitly show that OD state is preserved in an ensemble with incoherent decay, we

study the evolution of the modes by taking into account the effective Hamiltonian (3.4) with

the free Hamiltonians of atoms, dark and bright fields, we have the following Heisenberg-

Langevin equations:

(∂t + c∂z) B̂ = −iα0n0gaŜ12, (∂t + c∂z) D̂ = 0, (3.11)

dŜ12

dt
= −γ12

2
Ŝ12 − iα0gaB̂ + i

√
γ12F̂12(t, z) + δ(t− t0)Ŝ12(t0, z), (3.12)

where γ12 is the ground state coherence decay constant, 〈 F̂12 〉 are the Langevin forces with

the correlation functions 〈 F̂ †12(t, z) 〉 = 〈 F̂12(t′, z′) 〉 = 0, n0〈 F̂12(t, z)F̂ †12(t, z′) 〉 = c ·δ(z−z′).

A general solution to Eq. (3.12) can be found similarly to Ref. [86]. Using the Fourier

transformation B̂(ω, Z) = 1√
2π

∫
B̂(τ, Z)eiωτdτ in the co-moving reference frame τ = t− z/c,

Z = z and parameterizing the optical depth via κ = α2
0n0 | gs |2 /(cγ12), we arrive at:

B̂(ω, Z) = e
− 2κ·Z

(1−2iω/γ12) B̂(ω, 0)+

+ 2

∫ Z

0

√
n0κ/(cγ12)

(1− 2iω/γ12)
e

2κ(Z′−Z)
(1−2iω/γ12)

(
√
γ12F̂12(ω, Z ′) +

ieiω(t0−Z′/c)
√

2π
Ŝ12(t0, Z

′)

)
dZ ′, (3.13)

D̂(ω, Z) = D̂(ω, 0). (3.14)

Mode B̂ exhibits usual Beer’s absorption and tends to the vacuum state | 0B 〉 in the limit

of infinite optical depth, while mode D̂ stays unchanged. As an example of such an evolution

we input in our media physically vacuum state | 0a, 0b 〉:

〈 n̂B 〉 =
| ε |2

1− | ε |2
e
− 2κ·Z

1+(2ω/γ12)2 and 〈 n̂D 〉 =
| ε |2

1− | ε |2
. (3.15)

Solution (3.13) allows us to monitor nonclassical correlations in the position and momentum

quadratures of mode B̂ and D̂ as they propagate through the sample (Fig. 3.2 (a)). Once

56



again for the initial state being in a physical vacuum, we have variances of quadratures:

〈∆X̂2
B(ω, Z) 〉 = 〈∆P̂ 2

B(ω, Z) 〉 =

(
1

2
+

ε2

1− ε2
e
− 4κZ

1+(2ω/γ12)2

)
. (3.16)

We see that the quadrature variance of the bright field evolves to the value of 1
2
, which is

characteristic of the vacuum state. If the storage protocol is not used, the atomic states are

traced out and we obtain the thermal state in the OD-mode:

ρ̂B,D = |α0 |2 | 0B 〉 〈 0B | ⊗
∑
n

| ε |2n |nD 〉 〈nD | . (3.17)
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Figure (3.2) (a) Development of entanglement of the optical modes as they propagate
through the two samples for the vacuum input | 0a, 0b 〉 and ε = 0.5. a) Bogoliubov (B̂, D̂)
modes; b) Physical modes (â, b̂). The variances of the individual position quadratures as well
as their sum and difference are displayed. At the entrance of the first sample, the Bogoliubov
modes are in the TMSV state. Between the samples, the state is mixed and described by
Eqs. (3.9) and (3.10). After the second sample, the Bogoliubov modes are in the vacuum
state, and the physical modes are in TMSV described by Eqs. (3.6) and (3.7)
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3.5 Preparation of two-mode squeezed state via dissi-

pation

We now show how our scheme can be extended to prepare the two mode squeezed vacuum

state (3.6) from physical vacuum input. To that end, we send the optical modes through

an additional, similar atomic sample (Fig. 3.1(b)) with the atomic population prepared in

state | 2 〉. In addition, we invert the ratio ε, which is equivalent to exchanging the values

of the coupling constants ga and gb on the atomic transitions. This is done by adjusting

the amplitudes and phases of the Rabi frequencies Ωa and Ωb. In this case the effective

Hamiltonian is

V̂ ′eff = ~α0gan0

∫ L

0

(
D̂†Ŝ ′21 + D̂(Ŝ ′21)†

)
dz, (3.18)

where the primes mark the second sample. Now mode D̂ becomes bright and experiences

absorption, while mode B̂ is dark and does not evolve. Since, after the first sample, mode

B̂ is already in the vacuum state, propagation through the second sample will yield the

double-vacuum state (3.6) of modes B̂ and D̂.

In Figure 3.2 we demonstrate evolution of quadratures passing through two inversely

polarized ensembles in both bases. If we start with the TMSV state in the (B̂, D̂) basis after

the first sample the mode B̂ is absorbed and in mode D̂ we have thermal state (3.17). After

the second sample the mode D̂ is absorbed and we have vacuum in both modes | 0B, 0D 〉.

At the same time in a physical basis (â, b̂) the evolution starts with vacuum | 0a, 0b 〉, after

the first ensemble two modes are in a partially mixed state. The second ensemble finishes

preparation of TMSV state through a dissipative (absorptive) process (Fig. 3.2(a)).

In addition to robustness to losses, our technique permits easy control of the squeezing

parameter r(ε) by adjusting the strengths of the control fields. Potential detrimental factors

such as nonlinearities caused by a finite population in level | 2 〉 can be suppressed by reducing
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the interaction time and working at sufficiently large one-photon detunings.

3.6 Dynamical preparation of optical dark state

It is interesting to analyze the emergence of OD states in the context of gradient echo

memory setting [87, 88], in which the frequency of the ground state transition varies along

the sample. Figure 3.3 shows the the number of photons in the signal mode as it propagates

through the sample. When the fields enter the atomic sample, the two-photon detuning

for each pair of control and quantum fields is significant, so a four-wave mixing process

develops, leading to amplification. At the center of the sample, with the onset of two-photon

resonance, the bright mode is absorbed; its optical state becomes vacuum | 0B 〉.

Curiously, with further propagation, this state remains unchanged in spite of the reemer-

gence of the two-photon detuning. This can be intuitively explained as follows. In the pres-

ence of two-photon detuning δ12(Z), the Hamiltonian (3.4) acquires an additional position-

dependent term
∫
δ12(Z)Ŝ22(Z)dZ [89]. When this detuning is significant, it dominates the

light-atom interaction and results in the evolution of the dark field according to the phase

shift B(ω, Z) = e−iφ(Z,ω)B(ω, 0) with φ(Z, ω) ∝ κdZ
δ12(Z)−ω . In the Schrödinger picture, this
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Figure (3.3) Photon number of the signal mode propagating through an atomic sample
with a longitudinal inhomogeneous broadening of the ground state transition according to
ω21(z) = ω21(0) + β(Z − L/2), where β is gradient constant. The optical depth normalized
by the inhomogeneous broadening is κγ12/β = 5.
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phase shift corresponds to the evolution operator Û = e−i
∫
dω φ(Z,ω)B̂†(ω,0)B̂(ω,0). If the bright

mode is in the vacuum state, this operator equals identity, so no evolution is present.

3.7 Conclusion and discussion

The OD state formalism proposed here introduces a unified theoretical framework for

a whole range of recent theoretical and experimental studies of different quantum systems

of various nature. In addition to the aforementioned application to light-atom interfacing

[90, 91, 29], this mechanism can be used to interpret the emergence of entangled states of the

collective spin and the mecahnical motion of an atomic cloud interacting with a dissipative

common cavity mode [92, 93, 94]. Similar physics occurs in optomechanics, where two cavity

modes are weakly coupled with a single mechanical oscillator [95, 96]. By proper choice of

the detunings of the driving optical fields (e.g., one field being blue-detuned with respect

to the first cavity mode the other is red with respect to the second), one can obtain an

interaction of the form (3.2), which can again be treated by introducing the dark and bright

modes of the cavities.

In this work, we concentrated on the regime of ε < 1, which describes a beamsplitter-like

interaction (3.4). The special case ε = 1 results in the so-called quantum mechanics free

subsystem [97], providing a way to evade quantum-measurement backaction [98]. For the

case of gb > ga, a transformation analogous to Eq. (3.3) can be applied, resulting in the

interaction of the parametric form V̂eff ∼ D̂Ŝ12 + D̂†Ŝ†12. The associated physics will be

studied elsewhere.

In conclusion, we have shown the existence of optical dark two-color field states in Λ

atomic ensemble accompanied by FWM. These dark states—the special two-mode squeezed

states—do not evolve while propagating through an ensemble. They can be expressed in

terms of dark and bright mode as a product of bright mode in vacuum and arbitrary state

of the dark mode. Based on this, we propose the generation method for the dark states via
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either dissipative or purely dynamic interactions. We note that the OD state picture and

the generation method gives us a bridge to the physics of the recently proposed schemes of

macroscopic entanglement generation with atomic [91] and optomechanical [95] systems.

The paper relevant to this chapter is accepted for publication in New Journal of Physics.

The current version is uploaded to arXiv, see [84].
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Chapter 4

Experimental tools and techniques

In this chapter we describe the experimental tools and techniques used in our experi-

ment. Two essential ingredients required for the two-mode squeezed state generation are

a nonlinear medium and pumping fields. We have chosen to induce the FWM process in

Rubidium atoms. These atoms are cooled via optical molasses to achieve a dense yet cold

species. Low temperature reduces Doppler broadening below the natural linewidth, and their

level structure becomes effectively three-level or lambda-type (see Fig. 4.1(a)). Two lower

hyperfine levels are coupled to an excited state with two lasers inducing emission of two

squeezed modes. The atomic cloud is overlapped with a cavity mode to enhance light-atom

interaction. Since the cavity determines the spatial mode, it also requires to be stabilized to

keep it in resonance with both emitted photonic modes.

In this chapter we will describe all required apparatuses for the experiment. We start

with a description of our vacuum system in Section 4.1, which is necessary to reduce collisions

with background gases and to cool gas to low temperatures. In the next Section 4.2 we talk

about the lasers used at all stages of the experiment. We set constraints on their frequency

stability and discuss the locking techniques used. With the laser system defined, we move on

to the atomic cooling methods and characterization of the cloud (Section 4.3). Section 4.4 is

dedicated to the cavity’s assembly, its characteristics and stabilization. The last missing tool
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Figure (4.1) (a) D1 line of Rubidium 87. Two pumps are closely tuned to the upper F ′ = 2
transition. (b) The simplified experimental setup with only essential parts included: optical
molasses (red dashed lines), two pumps for 4WM (two solid blue lines) and the cavity lock
laser ( dashed orange). Both pumps and cavity lock laser enter from the same input cavity
port. An atomic cloud is prepared with optical molasses, which includes two more lasers. It
is overlapped with the mode of the resonator to have an effective coupling.

is a measurement of non-classical light. We utilize a homodyne detection, which acquires

a quadrature of the electromagnetic field. In the last section we consolidate all parts and

divide an experiment into time stages.

4.1 Vacuum system

A home-made glass chamber is the central part of the vacuum chamber. The idea of

using the commercially produced chambers was rejected in order to avoid Eddy currents.

The chamber was blown in the science workshop and has height of 5.5 cm and diameter of

7 cm. Another student then glued to it seven windows in a horizontal plane (∅ 2.5 cm) and

two larger viewports (∅ 5 cm) on the top and bottom. In total the center of the chamber

is optically accessible from five different directions. Three of them are used for an optical

molasses, one is an optical cavity output, and the last one could be used for the initial

optical pumping or for pumping at ninety degrees. To reach a high vacuum (HV) we use

three pumping stages. The pumping process starts with a rotational mechanical pump (SH-
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Figure (4.2) (a) Vacuum system consists of a rough pump, which works on an initial stage
of a process. After it follows a valve isolating main vacuum chamber, where an ion pump
maintains HV pressure. A Rubidium atom dispenser directly faces the glass vacuum cham-
ber, where a magneto-optical trap works. One extra feedthrough on the left is used to control
cavity length with a piezo-actuator. The glass vacuum chamber (light blue color) has 7 view
ports in a horizontal plane. Two larger windows from top an bottom fulfill a requirement of
three orthogonal directions for an optical molasses. (b) Photo of a glass vacuum chamber,
two-mirrors forming the resonator are visible. Two coils from the top and bottom are placed
close to the vacuum chamber and form a magnetic quadrupole trap.
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110 Dry scroll, Agilent), which reaches a pressure of 10−2 Torr. Secondly, a turbo pump

(V-81M, Agilent) reduces pressure to 10−6 Torr. At this stage, a bake-out is performed to

speed up water desorption, material outgassing, and diffusion rates. Our home-made glass

vacuum chamber is glued with a vacuum epoxy (Torr Seal). This significantly limits the

upper temperature that we can reach without causing damage. The melting point from the

datasheet is 120◦C, although in the experiment we uncovered that we should not exceed

100◦C.

After we cool down our system, we start an ion pump (varian, VacIon 8 l/s) and shut

off a valve thereby isolating the vacuum chamber from the rough pumps. The ion pump

runs continuously in order to compensate for an overall leakage of the vacuum chamber and

to pump out excessive Rubidium atoms used in experiments. Due to heating and cooling

processes and due to age, the glass part of the vacuum chamber does not allow us to enter

the ultra-high vacuum (UHV) regime. For this reason leaving us with pressure 1 · 10−8 Torr

on the border between UHV and HV.

As a source of natural Rubidium we use alkali metal dispensers from SAES (RB/NF/4.8/

17 FT10+10 ). We asked the University of Calgary science workshop to weld three of them

in row to a gasket with a feedthrough. We run a controllable current of 2.5–3 A, which heats

the dispensers to a certain temperature when a reduction reaction between a chromate and

the St 101 alloy starts and frees pure Rubidium. In our system we encountered that the

amount of alkali atoms lasts only two to three years, after which we were forced to repeat a

pumping procedure. A good solution is to use a flange with a few sets of feedthroughs each

with its own set of dispensers, which would allow us work continuously without opening the

vacuum.
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4.2 Lasers and locks

In our experiment we work with Rubidium 87. There are two transitions from its ground

state 52S1/2 to its nearest excited levels 52P1/2 and 52P3/2 lying in a near infrared, usually

called D1 and D2 lines respectively [67]. There are many coherent sources existing for

the required wavelength: cheap GaAs diodes, tunable Ti-Sapphire lasers, fiber lasers with

frequency doubling, dye lasers and others. To optically cool atoms we use two lasers (Section

4.3) and to achieve primary atom-light interaction we require two more. An additional laser

is used to preset and keep constant the central frequency of the cavity. Three of these lasers

are home-made external-cavity diode lasers in the so-called Littrow configuration [99, 100].

Two other lasers were available when I arrived, one of them is a commercial Toptica DL-100

and the other is an MBR-110 Titanium-Sapphire laser.

Each laser is playing a different role and has different constraints on the maximum al-

lowable frequency shift, although the upper limit for all of them is 5 MHz. The range is

estimated from two main scales in our experiment: the natural linewidth of Rubidium (6

MHz) and the cavity linewidth (30 MHz). In reality wavelengths of ECDL lasers drift by at

least 10 MHz per minute. Thus, we have to have good frequency references. There are three

typical optical frequency standards: high-Q reference cavities, certain electronic transition

of atoms, or actively stabilized frequency combs. We combine both the cavity and atomic

approaches in our work. It seems natural to use a saturated absorption spectroscopy of

Rubidium 87 and it indeed works for two cooling lasers (Subsections 4.2.1, 4.2.2). However,

the cavity lock laser must be far-detuned from an atomic resonance for two reasons. First,

it follows the same path as the signal and pump do (Fig. 4.1), and it would inevitably have

reached detectors and interfered with the measurement. Secondly, being close to resonance

it would have induced unwanted atomic transitions, introducing noise photons. Therefore,

we detune the laser away from the atomic transition and lock its frequency to the master

laser (Subsection 4.2.3).

To control a laser frequency and lock it to the references mentioned above, we have to
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familiarize ourselves with the way it operates. The central core of a home-made ECDL laser

is a semiconductor laser diode, whose faces are polished and act as a small Fabry-Perot

cavity. Its gain bandwidth is as wide as 5–10 nm, and the emission will happen on one

of many longitudinal modes having maximum gain. If we adjust the temperature of the

diode we change the effective length of the cavity, thus changing the resonant longitudinal

mode. This method is versatile to have access to a wide range of wavelengths, typically we

observe around ∆ν =1 GHz change per ∆T = 0.1◦. Of course, this tremendous sensitivity

sets a high demand on the temperature controller. While the temperature stability of the

controller of 0.001◦ is easily obtainable, the temperature setting accuracy is less precise,

e.g., only 0.1◦ for ITC102, Thorlabs. Moreover, the setting process is very slow, with the

proportional–integral–derivative controller’s oscillation period being a few seconds. For these

reasons the temperature is not used to compensate fast frequency fluctuations. The second

and the fastest adjustment of emitted frequency is a change of the injection current, which

affects both the temperature of the diode and the refractive index [101]. It enables a high-

frequency modulation (up to 1 GHz) at a cost of a small mode-hop free range (200 MHz).

A laser diode chip is already a fully functional laser, however, its frequency tunability

and stability is not enough for probing cold alkali atoms. To narrow the emission line an

external resonator is used. If the resonator’s linewidth is narrower than that of the laser, it

will bind the laser emission to its own frequency. The design of the external cavity we use

has an additional holographic diffraction grating, which is set on an angle to send the first

order of diffraction back into the diode. The diode laser and the grating form an external

cavity approximately 4 cm long. A piezo-actuator is mounted behind the grating and an

applied voltage slightly tilts it, causing lasing frequency changes. Summarizing all of the

above, there are three ways to set the required wavelength of ECDL: temperature, injection

current, and piezo-actuator (or grating angle).

Additionally to this short term change (due to temperature fluctuations, current ripples

and vibrations), ECDL is strongly affected by the ambient temperature. Unfortunately,
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there is no thermostat in the room, and the temperature could change by two to five degrees

per day. This leads to a necessity of a rough adjustment of the laser’s wavelength every few

hours and makes an experiment extremely tedious.

In the preceding discussion we focused our attention on the drift of the mean value of

the central frequency, although coherent processes in atoms additionally demand the narrow

linewidth of the pumping lasers and local oscillators. Furthermore, both pumps are supposed

to be phase-locked to each other with minimal relative phase noise (Subsection 5.1.4). The

linewidth of the MBR laser is <75 kHz. The Toptica claims to have 100 kHz to 1 MHz at 5 µs

integration time, when we measure it on longer integration times and it becomes comparable

with our home-made lasers with ∆ν = 5 MHz. We use phase-locking techniques described

in Subsections 4.2.3 and 4.2.4 to narrow the linewidth of the second pump (Toptica).

4.2.1 Lock-in and Saturated absorption

Laser’s frequency should be stabilized within a MHz from the desired value for laser

cooling. The natural way of stabilization is to use an atomic absorption line as the reference.

Unfortunately, the Doppler broadening of an atomic line at a room temperature makes an

optical transition a few orders of magnitude larger than its natural linewidth (500 MHz

versus γ = 6 MHz), that is unacceptable for stabilization. Thankfully, there is a simple and

elegant way to overcome this obstacle, which is called the saturated absorption [102]. By

applying counter-propagating strong pump and weak probe beams one can see the reduction

of the probe’s absorption due to saturation by the pump, if only the pump and the probe are

interacting with the same atoms. The former is valid for atoms with zero velocity, and it can

be easily explained if we consider an atom with velocity v (projection of on the propagation

axis) and transition frequency ν0 in 1D. In the laboratory reference frame both probe and

pump have frequency ν0 and opposite ±k wavevectors, which leads to an opposite Doppler

shift in the atomic reference frame and frequencies ν0± ν0v/c. Evidently both fields interact

simultaneously only with atoms with zero velocity, making it possible to resolve the natural
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Figure (4.3) Optical diagrams of laser locks we use. a) A double-pass spectroscopy is sent
to a photodetector to generate an error signal, which is sent into a lock-in amplifier. b)
DAVLL lock. The beam is split in to two parts, a weak linearly polarized probe experiences
a circular dichroism in an atomic cell. Right and left circularily polarized portions of the
beam go to two separate detectors. More powerful part of the beam counter-propagates
through the cell to induce a saturated absorption. c) OPLL. Two lasers to be locked are
mixed on a BS, for a maximal beating signal the mode-matching should be well optimized.
The ultra-fast detector’s converts high frequency beating signal in an oscillating current,
which is fed to a PLL. d) Injection lock uses a modulated beam of a master laser. This beam
bypasses a Faraday isolator, and enters an internal resonator of a slave ECDL by reflecting
from the first PBS.
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(a) (b)

Figure (4.4) Striped and dim cold atomic cloud due to applied dithering (b) versus unlocked
laser (a).

linewidth of the transition.

Therefore Doppler broadening is reduced ideally to a natural linewidth of an excited level

(see Fig. 4.6(b)) and it is possible to lock a laser on it. We lock on a peak of |F = 2 〉 →

|F = 3 〉 cross-over by means of a lock-in amplifier and a feedback loop. For this purpose

the laser’s frequency is modulated with a frequency Ω generated inside our homemade lock.

If the laser’s frequency is on the atomic peak, the probe’s intensity has a modulation with

twice the modulation frequency. In turn, when the laser is on a side, the modulation has a

frequency Ω. In this case the error signal can be derived through the phase detection as the

small laser’s frequency deviation produces a positive or negative phase shift depending on a

deviation direction. The phase detection is realized via a phase detector, where the signal

from a detector is multiplied by an initial modulation signal and low pass filtered after.

Using this method the laser can be stabilized on a peak for days. However there is

still one drawback. The built-in laser’s modulation affects the magneto-optical trap density,

as the laser dithers across the resonance. As we can see from Figure 4.4, the presence of

modulation makes the atomic ensemble spatially modulated introducing inhomogeneity. The

former can be mitigated by modulating atomic reference frequency. As an option one can

apply a magnetic field to the atomic cell and modulate the current through magnetic coils

instead of the laser current.
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4.2.2 Dichroic atomic vapor laser lock

The method is called dichroic atomic vapor laser lock (DAVLL) and is based on the

circular dichroism of an atomic vapour in the presence of a longitudinal magnetic field [103].

A linearly polarized light is sent through a Rubidium cell placed inside a solenoid (Fig.

4.3(b)). The degenerate hyperfine energy levels are split with an applied magnetic field

in a particular way, namely that atoms will preferably absorb σ− (σ+) component from a

red-detuned (blue-detuned) laser beam. The signals corresponding to different polarizations

are separated on a circular polarizer. It consists of a quarter wave plate set to 45◦ and a

polarizing beam splitter (PBS). Two outputs are sent on two separate photodetectors with

similar responses. Their currents are subtracted from each other, generating a linear error

signal for the small deviations of the laser frequency.

This method has a few salient advantages. First, it does not require to modulate a laser’s

current in contrast to lock-in. Moreover, there is no need to center the laser exactly on the

absorption dip, since one can assign different weights to each photodetector’s current before

subtraction. The choice of any locking point is useful, in the case of the cooling process, as

the optimal detuning of the laser is strongly connected to the number of atoms in the trap.

Especially, the repumping transition is not well resolved compared to cooling (Fig. 4.6), and

we choose the locking point based upon the brightness of the cloud.

We combined the DAVLL technique together with a saturated absorption in a single

atomic cell (Fig. 4.3(b)). We built a simple feedback loop to control the central frequency

of the ECLD via a piezo-actuator (circuit diagram is in Appendix E).

4.2.3 Optical phase-lock loop

The optical phase-lock loop (OPLL) keeps the frequencies locked, also it narrows the

linewidth of the laser [104, 105], and this is crucial in phase-sensitive experiments. The

operation of OPLL is based on a microwave phase-lock loop (PLL) chip, ADF4107 is used

here [105]. It compares phases between two radio-frequency signals and produces an error
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proportional to their difference. For the phase locking of two independent optical sources

they are mode-matched on a BS and sent on an ultrafast photodiode (Hamamtsu G-4176,

Fig. 4.3(c)). The high frequency beating signal produced on a photodetector contains both

the frequency and phase difference of two lasers: ∝ sin(∆ω · t + ∆φ). We preamplify it to

0 dBm and send it together with the frequency reference in a PLL box. The frequency is

divided by an adjustable factor, N(R), so the resultant frequency lies in an operational range

of the chip ADF4107 from 0 to 100 MHz. An error signal is split in two components: fast

and slow, each modifies the corresponding feedback mechanism: an injection current and a

voltage for a piezo-electric actuator.

This method establishes master-slave relations between two lasers. Keeping in mind the

narrow line of MBR-110, the choice of Master laser is obvious. The second, cavity lock laser

becomes phase locked to a master and could be at most 7 GHz detuned from the atomic

resonance. The Raman strength of interaction is proportional to Ω2/∆, which produces

significant coupling between the laser and atoms. We find it necessary to switch the laser

off for the time of experiment. Another approach to overcome this coupling issue would be

to design an experiment, where the role of the optical reference is taken by an ultra-stable

cavity with all other lasers being locked to it [39]. The detuning could differ by many FSRs

and is limited only by the coating of the mirrors.

The OPLL is easy to operate for two reasons: one, it does not require a high radio-

frequency source due to frequency pre-scaling, two, it has a good stability, the laser can

stay locked for hours. At the same time it has significant limitations: phase noise is too

high for our purposes (Subsection 4.2.4) and the beating signal is limited by 7 GHz. I want

to accentuate that these restrictions are related to the high phase noise sensitivity of our

experiment, but it will perfectly suit many other experiments. In addition there are better

analogs [106].
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Figure (4.5) (a) Comparison of phase lock performance (dahed dark blue) versus injection
lock (solid blue). The beating signal spectrum is offset to zero from the 6834 MHz, the
spectrum analyzer settings are RBW=30 kHz, VBW=0.3 kHz. (b) The spectrum of a
beating signal between MBR-110 and ECDL DL-100 set by means of the injection lock.
RBW=1 kHz, VBW=30 Hz.

4.2.4 Optical injection locking

We have found that the phase noise of an ECDL laser locked with a PLL described

above is too high to measure two-mode squeezing with two independent lasers as pumps.

Its performance is presented in an original paper and in Figure 4.5(a), we estimate that the

square of relative phase variation is 1.17 rad2 (more details in Subsection 5.1.4). To reduce

it further we implemented an injection locking technique.

We modulate the Master laser (MBR-110 ) with a fiber-coupled traveling wave EOM

(NIR-MPX800-LN-10, iXblue), to achieve a sideband at exactly the frequency of the second

pump. The 6.8 GHz microwave driving signal is derived from the PLL frequency synthesizer

ADF5355, and subsequently amplified by MiniCircuits ZVE-3W-83+ to achieve optimal

sideband power. At the output of the modulator three frequencies are present: the original

frequency or zeroth sideband and ± 1 sidebands, frequencies of which are different from the

central by the amount of modulation frequency. The zeroth and -1 sidebands are filtered

by the lens cavity [107], while the +1 sideband passes through the cavity and is sent into a

slave laser (Fig. 4.3(d)).

The injection power should be high enough to saturate the gain of the slave diode, so it
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will not amplify its own free running frequency [108]. Rather convenient for our purposes,

we are able to establish the lock with only 20 µW of power, since we can have a significant

drift of the lens cavity’s central frequency and still remain the lock. The resulting linewidth

of the ECDL is much narrower than the one obtained with the phase lock (Fig. 4.5(a)), and

the central peak width is not resolvable with our spectrum analyzer (Fig. 4.5(b)). We expect

it to coincide with the linewidth of the Master laser.

The astute reader will doubt if the second laser is necessary, since the +1 sideband has the

correct frequency and the linewidth of the source already. The complication comes from the

maximum obtainable power of this sideband, while the input power into the phase modulator

should not exceed 20 mW. We have no more than a 1 mW of power, if we account for the

insertion losses (20%), modulation depth (a side peak is approximately 35% of the zeroth),

and lens cavity transmission (55%). Noting that this beam serves not only as a pump, but

also as a local oscillator for the homodyne detection, thus it demands at least 15 mW of

power.

4.3 Atomic system

Our experimental setup consists of a cold atomic Rubidium 87 with the key parameters

summarized in Table 4.1. These alkali atoms have one valence electron and their spectrum

follows the hydrogen-like formula (Balmer series). Their spectrum lies in a near infrared and

has a simple structure with two optically-addressable lines, D1 and D2. All these properties

make them favourable for various quantum optical experiments, such as quantum memories

[109] and quantum simulators [110].

n Z λ2, nm λ1, nm γ/2π, MHz ∆HFS, MHz TD, µ K m, kg
5 37 780.24 794.979 6 6834.7 146 1.44 · 10−25

Table (4.1) Most important parameters of 87Rb, where n is a principal number, Z an atomic
number, λ1,2 central wavelength of D1,2 line, γ is an atomic linewidth, ∆HFS is a hyperfine
splitting, Doppler cooling temperature TD, atomic mass m.
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Figure (4.6) (a) D2 Rubidium line is used for optical molasses. Six counter-propagating
beams of cooling and repumping act on the corresponding |F = 2 〉 → |F ′ = 3 〉 and
|F = 1 〉 → |F ′ = 2 〉 transitions. (b)–(c) Spectroscopy of D2 line of the natural abundance of
Rubidium isotope with 72.2% of 85Rb and 27.8% of 87Rb. Absorption peaks corresponding to
each isotope are labeled. (b) Two transitions are present |F = 2 〉 → |F ′ = 1, 2, 3 〉 for 87Rb
and |F = 3 〉 → |F ′ = 2, 3, 4 〉 for 85Rb. ”co” means cross-over between two corresponding
transitions. (c) The transition |F = 1 〉 → |F ′ = 0, 1, 2 〉 of 87Rb
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The cold atomic cloud is obtained via Doppler cooling inside a magneto-optical trap.

There are a few motivations why we are going to the trouble of operation at ultra-high

vacuum to prepare atoms. The first negative factor we want to avoid is the Doppler broad-

ening, which is proportional to the square root of temperature and it drops below the natural

linewidth at the Doppler temperature. The full-width at half-maximum (FWHM) is given

by ∆ν = ν0

√
8 ln 2kBT
mc2

[111, Ch. 1, p. 6]. The second negative effect is the time of flight,

meaning that an atom will escape the area of interaction before the experimental sequence is

finished. We work with a cavity mode with a diameter of 100 µm. The velocity of a hot gas

ranges from 100 to 1000 m/s, for the Doppler cooled atoms it is as low as vrms =
√

3kBT
m
≈ 20

cm/s. The resulting time an atom will stay in the interaction zone is 1 µs versus 0.5 ms for

cooled atoms. This time is estimated from the residual movement of atoms not including

the gravitational acceleration.

We utilize the standard magneto-optical trap (MOT), which is well described in textbooks

such as [112, 113]. MOT includes two lasers working on the D2 line and two magnetic coils

creating a quadrupole trap. Six counter-propagating beams of cooling and repumping act on

the corresponding |F = 2 〉 → |F ′ = 3 〉 and |F = 1 〉 → |F ′ = 2 〉 transitions, as can be seen

in Figure 4.6. The Doppler temperature is determined by the linewidth of cooling transition

γ and is given by TD = ~γ
2kB

, and equal to 146 µK for 87Rb.

4.3.1 Optical molasses

Typically 87Rb is cooled on the D2 line, since it has a closed transition |F = 2 〉 →

|F ′ = 3 〉. Atoms excited by the resonance beam are prohibited to spontaneously decay on a

dark |F = 1 〉, due to selection rules for the dipole transitions ∆F = ±1. The cooling laser

is centered on the corresponding wavelength ∼ 780.246 nm. By monitoring the saturated

absorption spectroscopy we lock the laser frequency to a strong cross-over peak between

|F ′ = 2 〉 and |F ′ = 3 〉 (see Fig. 4.6). An additional AOM with a central frequency 110 MHz

decreases detuning to an approximately optimum value of γ/2. Despite that the spontaneous
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Figure (4.7) A simplified layout for the optical molasses. Each laser is locked to a corre-
sponding rubidium transition. After that they are modulated with AOM to perform switch-
ing. Cooling laser additionally passes through a TA, it generates an elliptical mode, which
we compensate with a cylindrical lens and a stage of a fiber mode cleaning. We use a polar-
ization maintaining fiber, as we require a certain polarization for the cooling process. Beams
from both lasers are combined on a BS, their sizes are expanded in a telescope, they are split
into three beams: two horizontal (solid red) and one vertical (dashed red). Polarizations of
the lasers are changed from linear to σ± with QWP. Three mirrors from the opposite side of
the vacuum chamber produce reflected beams for a complete optical molasses.
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decay from |F = 3 〉 on |F = 1 〉 is prohibited, atoms can fall into this “dark” state through

the detuned transition |F = 2 〉 → |F ′ = 2 〉 induced by the strong cooling laser [111]. Thus,

the repumping laser is required for the cooling process to succeed. It is centered at wavelength

∼ 780.232 nm to address |F = 1 〉 on |F ′ = 2 〉 transition. We adjust the central wavelength

via saturated absorption spectroscopy (Fig. 4.6) and we lock this laser at the brightest point

of our cloud via DAVLL (see subsection 4.2.2).

In order to produce six counter-propagating beams, we mode-match both laser beams

on a BS. We send them through the same telescope in order to expand the diameters up

to 1 cm. Larger diameter keeps the power homogeneous in the central area and allows

easier alignment. We split the combined beam into three and send it into three orthogonal

directions through the center of the vacuum chamber (Fig. 4.6). These beams are back

reflected from the mirrors on the opposite side of the chamber and form the three dimensional

optical molasses.

The repumping laser power should be kept above the saturation (Isat = 1.6 mW/cm2

[67]), and is equal to 17 mW. We noticed that by increasing the power of cooling laser, we

see brighter fluorescence until we hit the limit of the ECDL power, which is 50–60 mW of

continuous-wave power. We use a tapered amplifier (EYP-TPA-0780-0100-3006-CMT03-

0000 ) to increase the ECDL power further. We have experimentally found that an optimum

brightness of the cloud corresponds to 60 mW of cooling laser near the vacuum chamber (20

mW in each beam).

4.3.2 Magnetic trap

Two magnetic coils, with a diameter of 8 cm and 63 turns each, are used to form a

quadrupole trap. We position them 10 cm apart to leave a 1 cm gap between each coil

and the vacuum chamber. Their resistance is 0.4 Ω and inductance 900 µH. Our power

supplies are limited by 10 A of a constant current, and we set the current through each coil

to approximately 9 A not to hit the maximum power available while the coils heat. This
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Figure (4.8) Free expansion of a cold atomic cloud viewed with a camera with a certain
delay: 0, 100µs, 500µs, 750µs, 1000µs, 2000µs, 3500µs.

results in the magnetic field gradient around 20 G/cm.

Besides creating a magnetic trap, coils help us to move the cooled atomic cloud in six

directions. We power the coils independently with a separate constant current supply, and

this gives us control over the cloud’s vertical position. We rigidly fix them adjacent to

a dovetail optical rail and place it on top of two orthogonal translation stages. We will

reposition an atomic cloud having all this three degrees of freedom and optimizing overlap

between cavity mode (see Section 5.2).

These coils have no water cooling to dissipate generated 32 W of heat, thus we installed

two small fans in order to slow down the temperature growth at 50◦C. These temperature

changes strongly affect our cavity length and in a long term its alignment. As a further

possible improvement of our setup would be installing water cooling system. Another option

of a slight modification, which can improve significantly the performance is exchanging these

coils with rectangular-shaped. This is a way to generate a cigar-shape cloud, which can have

very high atomic densities [44] and will have better overlap with a cavity mode due to its

elongated shape.

4.3.3 Temperature measurement

We visualize our atomic cloud with a camera (UI-2230SE-M-BG) collecting fluorescence

photons. This camera has an option of an external triggering. We measured an expansion of

our atomic cloud by switching off both lasers and sending a trigger signal to a camera after

an adjustable delay (Fig. 4.8). We fitted the captured density distribution with a Gaussian

function e
− (x−x0)2

σ2
x + e

− (z−z0)2

σ2
z and knowing pixel per mm, we found the actual atomic sizes σx

and σz. We have modeled our atomic cloud to have velocities to follow Maxwell-Boltzmann
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Figure (4.9) Free expansion of an atomic cloud. We averaged over 100 images to obtain
each point for a certain delay. The fitted curves are found numerically and correspond to
temperatures of 37 and 60 µK. The acceleration of free fall is collinear with z axes and points
in opposite direction.

distribution (Fig. 4.9). For two directions we had to use slightly different temperatures for

the best fit of experimental data: Tz = 37 ± 5µK and Tx = 60 ± 7µK. We attribute this

difference to the initial shape of the cloud. We intentionally mismatch the cooling beams to

obtain an elongated shape, since it maximizes overlap between atoms and a cavity mode. A

disbalanced molasses force in a horizontal plane leads to a higher temperature compared to

vertical direction. It is worth noticing that these temperatures are well below the Doppler

limit and this is not surprising as a sub-Doppler cooling mechanism is present [114]. This is

the so-called Sisyphus cooling [115] with a temperature limit of TR = (~k)2

2mkB
.

4.4 Cavity

To enhance light-atom interaction we use a Fabry-Perot cavity which consists of two

plano-concave mirrors. The enhancement comes from the multipass nature of the resonator,

where light bounces back and forth between the mirrors and hence interacts with the me-

dia multiple times till it escapes the cavity. Below we present a simple model for inter-

nal/reflected electric field amplitudes within/from the cavity. The model allows us to calcu-
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late the cavity spectrum and how it depends on mirror reflectances.

4.4.1 Cavity spectrum

The simplest model to describe energy relations in the cavities with a lossy medium inside

are derived by summing up contributions of infinite round trips [116, p. 36]. We consider

a cavity consisting of two mirrors with reflection and transmission coefficients r1, r2 and

t1, t2. They are separated by a distance L. Between them we place a lossy medium with

transmission coefficient t (Fig. 4.10(a)). The incident field Ein is partially transmitted Eint1

and reflected −Einr1. After the first round trip we add to the reflected field a portion of

Eint
2
1t

2r2e
iφ, and generalizing it to the nth round-trip Eint

2
1r
n−1
1 t2nrn2 e

inφ. Thus the total

reflected field is the sum of a geometric progression:

Erefl = −Einr1 +
Eint

2
1

r1

∞∑
n=1

rn1 t
2nrn2 e

inφ = Ein
r2t

2eiφ − r1

1− r1r2t2eiφ
, (4.1)

where φ is a round trip phase obtained by a field. The reflected intensity is the squared

modulus of the field:

Irefl(φ) = Iin
(r1 − r2t

2)2 + 4r1r2t
2 sin2(φ/2)

(1− r1r2t2)2 + 4r1r2t2 sin2(φ/2)
. (4.2)

Extrema of this function give minima at φ/2 = πl and maxima at φ/2 = π/2 + lπ,

where l is an integer. The minimum for the reflected intensity corresponds to the resonant

condition, when transmission and circulating power are maximum. The phase obtained by a

wave during the round trip could be rewritten in quantifiable notations: φ/2 = 2πν
c

(n1(L−

d) + n2d) = 2πν
c
L∗, where n1 (n2) is a complex refractive index of a bare cavity (inserted

medium), ν is a central frequency of an incident electromagnetic field. The period of this

function in the frequency domain is ∆ν = c
2L∗

, for the empty resonator it has a more

recognizable form: FSR = c
2Ln

. The free spectral range (FSR) is the frequency spacing

between two adjacent longitudinal modes.
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Figure (4.10) (a) Schematically shown a cavity. Two mirrors are spaced at the distance L,
the lossy medium inside occupies part of the cavity d (b) Reflected spectrum for different
medium transmission coefficients.

We can notice a special regime, when the resonance φ/2 = πl coincides with a condition

r1 = r2t
2, from formula (4.2) follows that the reflected intensity is zero. This phenomena is

called impedance matching and it is an optical analog to a well-known effect in electronics.

In electronics the maximum power transfer or minimal reflection from the load is achieved if

the impedances of the load and the source are matched. The close analogy is pertinent for

the optical resonators, as could be easier seen if we rewrite the condition above as follows:

1−r2
1 = 1− (r2t

2)2. The left hand side is the energy entering the system, the right hand side

is a sum of losses inside the cavity and through the second mirror. All told, by matching the

rate at which we pump the cavity to the overall losses, the circulating power is maximum

and the reflection is zero.

Analogously to a reflected field we can find the field inside the cavity including the

dependence on the coordinate x along the cavity mode. The superposition of two counter-

propagating fields is:

Ec = t1Eine
ikx

∞∑
m=0

rm1 r
m
2 e

2imkL + t1r2Eine
−ik(2L−x)

∞∑
m=0

rm1 r
m
2 e
−2imkL

= t1Eine
ikx

(
1

1− r1r2e2ikL
+ r2e

−2ikL 1

1− r1r2e−2ikL

)
(4.3)
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The wavevector k = 2π(ν+δ)
c

, where ν = m · FSR is a frequency resonant with the cavity,

δ is a detuning from resonance, m is an integer, the length of the cavity in terms of FSR

L = c
2FSR

. Thus, e2ikL = e2πi δ
FSR :

Ec = t1Eine
ikx

(
1

1− r1r2e
2πi δ

FSR

+ r2e
−2πi δ

FSR
1

1− r1r2e
−2πi δ

FSR

)
(4.4)

If we consider the resonant condition with δ = 0, then the resultant field forms a standing

wave:

Ec = 2t1 cos kx
1 + r2

1− r1r2

Ein, and Ic = 4t21 cos2 kx

(
1 + r2

1− r1r2

)2

Iin. (4.5)

One more commonly used parameter to describe a cavity is finesse, by a definition it is

a ratio between FSR and a cavity linewidth κ: F = FSR
κ

. It is fully described by the cavity

losses: F =
π
√
r1r2t2

1−r1r2t2 and gives an average number of photon’s round trips before it escapes

the cavity. This brief introduction to the cavity spectrum lays the sufficient basis for our

forthcoming discussion.

4.4.2 Parameters for the cavity

After we have introduced all the basic characteristic of the cavity, we can intelligently

choose them. We deduce three restrictions on the parameters: both emitted photons must

be simultaneously in resonance with a cavity, photons should leave the cavity from one most

likely port, and an atom-light coupling constant is maximized. The last requirement can be

addresses if we exclude all the constants from the definition of cooperativity1 to observe the

major dependencies: C ∝ ρlaFλ2, where ρ is an atomic density, la is a length of an atomic

ensemble, λ is a central wavelength of an atomic transition. Assuming the atomic transition

to be fixed, we have to target for the highest finesse and atomic density. As was mentioned

1The definition of cooperativity is C =
4Ng20
κγ ∝ N

F
w2

0
λ2 = ρlaFλ2, where w0 is the waist of the cavity, N

is a number of atoms interacting with a cavity mode, γ is an atomic decay rate.
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previously, the ultra-high atomic densities are achieved in a cigar-shape cloud [44], while an

effective 2D shape makes overlap between atomic cloud and a cavity mode optimal.

First of all, the FSR of the cavity is selected in such a way that the cavity is simultaneously

in resonance with the Stokes and anti-Stokes photons (Fig. 2.6). This condition can be

fulfilled when integer number n of FSR is equal to their frequency difference: n · FSR =

ω1 − ω2. At the same time our Λ-scheme dictates this frequency difference to be ∆HFS + δ,

in notations from Section 2.4. The detuning δ is the variable parameter, which could easily

be in a range from 20 MHz to 1 GHz. In our final version δ = 59 MHz and the condition

to fulfill is n · FSR ≈ ∆HFS (Subsection 4.4.3). Although the length of the cavity is dictated

by our vacuum chamber. So it possible to have it in a range of 2–10 cm. One more thing

to consider is the phase difference between two modes. Two standing waves for photonic

modes will have a phase difference at the center of the cavity ∆φ = 2πn·FSR
c

L
2

= π
2
n. For even

n two standing waves have simultaneously antinodes at the center of the cavity, for odd n

one will be maximum, while the second wave is zero. Thus to ensure phase-matching we set

FSR = (∆HFS + δ)/2 and the length of the cavity equal to 4.4 cm.

We used the mirrors with different reflectances R1 = 95% and R2 > 99.99% for the

purpose of collecting the signal from one most likely port. If we assume no losses inside the

cavity, then the finesse depends only on reflectances and is F = π 4√R1R2

1−
√
R1R2

= 122. Knowing

this we find the linewidth of the cavity, κ = 30 MHz, which dominates both atomic decay

rate and collective Rabi frequency κ >
√
Ng0, γ13. These time scales are attributed to the

bad cavity regime, which is desirable in our experiment, as the fast cavity decay guarantees

that generated photon escapes the cavity, before it gets reabsorbed. The parameters of the

cavity are summarized in Table 4.2.

4.4.3 Assembly

We have decided that if we place our cavity mirrors outside of the vacuum chamber,

the losses induced by two windows will significantly reduce the repetition rate of photons
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F FSR, MHz Linewidth, MHz Waist, µm Curvature, mm R1, % R2, %
93 3446 34 86 60 95 99.99

Table (4.2) Summarizing parameters of the cavity. The value for the finesse is measured
in an experiment.

generatation. To have a rough estimate of the decline, we assume that each window has an

antireflection coating for a B-band, that reduces the reflectance approximately by 0.19% per

surface for our wavelengths. Thus, the total reflection for a round trip from two windows is

Ravg = 1.5% and the expected finesse of 120 drops to 93. Moreover, one has to differentiate

the spurious losses inside the cavity from the “good” losses from the output port, which leads

to an emission of our photonic modes toward the detector. In Section 2.2 we separately

include the spurious loss and loss on the output coupler. Please note, that this critique

stands, although the best experiments with cold atomic cloud and the cavity, are performed

with mirrors being outside of the vacuum chamber [41].

Thus we have designed cavity holders , which were glued inside of the vacuum chamber

together with cavity mirrors #109765 and #107808 from layertec (Fig. 4.2 and Fig. 4.11).

The output coupler mirror is glued to a hollow cylinder, which had a few holes from the

sides to evacuate a volume between a cavity mirror and a chamber’s window. All parts were

machined from stainless steel at the University’s workshop.

The second rear mirror should be placed rigidly inside a long glass tube. For this we

manufactured a holder consisting of three long rods, screwed together to a wheel type part,

so they form a triangle from a side, as shown in Figure 4.11. The vacuum tube has a slightly

varying diameter, it gets smaller toward the spherical part, to compensate for that we decided

to put springs into rods. The commercially produced spring plungers were installed to face

a glass tube and push towards it. One more complication was to be able to set a length of

the cavity to a desired value of 4.4 cm (FSR = ∆HFS

2
), to overcome this we put a mirror on

a plastic screw, which is reachable by a long screw driver through all the vacuum chamber.

This ”fine” adjustment is enough as we have free parameter–detuning δ.
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Figure (4.11) A rear mirror holder design.

To put it all together, we started with gluing mirror towards piezoelectric actuator

(TA0505D024 -Thorlabs). Afterwards we attached them to a screw constantly monitor-

ing the back reflection to keep them all aligned as a piece. Subsequently we placed our

complex structure with a front mirror into a mirror holder and on a 3-axis stage, we brought

it close to a vacuum chamber, so the front window and the chamber were touching. We

aligned the resonator to have one spatial mode, optimized its length and fixed the front

mirror in place with a few layers of glue. We precisely measured the free spectral range after

bake out with two separate lasers locked to each other with a detuning of two FSR. All the

resulting parameters are in the Table 4.2.

4.4.4 Pound-Drever-Hall Lock

We keep the cavity always in resonance with Stokes and Anti-Stokes photons by applying

an active stabilization. The stabilization is realized via the well-known Pound-Drever-Hall

(PDH) technique [117], which requires a phase-sensitive detector and a feed-back loop. If

we modulate the central frequency of our laser, we will have two sidebands outside of the

linewidth of a cavity. Since the reflected field from a cavity has a dispersive phase, we can

distinguish between “in resonance”, where a phase is zero, and “out of resonance,” where a

phase has different signs depending on length of a cavity mismatch.

To quantitatively describe the PDH locking, let us first consider an input light with

amplitude Ein and angular frequency ω0 after phase modulation with depth β and frequency
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Ω. Using Jacobi–Anger expansion and ignoring higher frequency sidebands, the light can be

expressed as

E = Eine
i(ωot+β sin Ωt) =

∑
n

Jn(β)einΩt ≈ Eine
iω0t
(
J0 + J1(β)eiΩt + J−1(β)e−iΩt

)
, (4.6)

where Jn(β) is the nth order Bessel function of the first kind. The reflected light from the

cavity is transformed by complex amplitude conversion factor F (ω):

F (ω) =
−i(ω − ωc)

κ+ i(ω − ωc)
, (4.7)

where ωc is the cavity resonant frequency, where κ is cavity inverse photon lifetime.

Taking into account the phase modulation, the light reflected from the cavity takes the

form:

Eref = Ein

(
F (ω0 + Ω)J1(β)eiΩt + F (ω0 − Ω)J−1(β)e−iΩt + F (ω0)J0(β)

)
(4.8)

Resulting interference of the sidebands and zero order are represented by two harmonics with

frequency Ω and 2Ω. The first harmonic is

|Eref |2 = IinJ1(β)J0(β)
(
F ∗(ω0)F (ω0 + Ω)eiΩt + F (ω0)F ∗(ω0 + Ω)e−iΩt

)
+IinJ−1(β)J0(β)

(
F ∗(ω0)F (ω0 − Ω)e−iΩt + F (ω0)F ∗(ω0 − Ω)eiΩt

)
, (4.9)

where Iin = |Ein |2 is the intensity of the incident light. If modulation frequency is much

larger than a cavity’s linewidth, than F (ω0 ± Ω) ≈ −1 and taking into account Bessel’s

function properties J−1(β) = −J1(β), the signal becomes

|Eref |2 ≈ 2iIinJ1(β)J0(β) (F ∗(ω0)− F (ω0)) sin Ωt

= 4IinJ1(β)J0(β)Im(F (ω0)) sin Ωt. (4.10)
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The amplitude of the first sideband provides the dispersion information. Thus the subse-

quent mixing of the photodetector’s output with LO derived from RF modulation extracts

frequency depending error signal Im(F (ω0)).

The PDH technique is known to be shot noise limited [117], it means, that signal-to-noise

ratio scales as square root of applied power. Below we quantify the locking range assuming

the experimental parameters. The goal is to determine the change of harmonic’s amplitude

for cavity frequency deviation. If we assume small frequency displacement from the cavity

resonance δω = ω0 − ωs � κ, the signal power can be expressed as

S ∼ 8IinJ1(β)J0(β)
δω

κ
R, (4.11)

where R is photodetector responsivity. The main noise source is the shot noise, which has flat

spectrum with the density 2eRIin, where e is an electron charge. If the lock has bandwidth

f , the signal to noise ratio is

S
N

=
8
√
RIinJ1(β)J0(β)√

2ef

δω

κ
. (4.12)

Therefore minimal locking stability range can be derived from Equation (4.12) for S
N = 1.

The modulation for locking laser is achieved via laser diode current modulation through a

bias-T circuit. In contrast to “pure” phase modulation via EOM the current modulation is

accompanied by stronger amplitude modulation especially for larger β. To keep the laser’s

amplitude stable small modulation depth β ≈ 8 · 10−4 is used.

We send 10 µW of power into a cavity mode, which is partially reflected and 200 nW

reaches a commercial photodetector (PDA8A), and then we send it through two stages of

amplification (ZFL-500LN and ZFL-500 )2. The PI circuit provides averaging over 1 ms,

what is reasonable with characteristic response time of cavity piezo transducer. Schematics

for locking electronics can be found in Appendix (D.1). Plugging values into (4.12), we

2Following the Friis formula [118], the proper order is to place primarily low noise amplifier.
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Figure (4.12) A conceptual scheme of Pound-Drever-Hall. A laser is modulated by the
frequency lying outside of a cavity linewidth. A laser beam reflects from a cavity and goes
on a photodetector, a radio-frequency (RF) signal is sent to a mixer, where it is multiplied by
a local oscillator (LO), and after passing through a low pass filter (LPF) voltage is applied
to a piezo-actuator.

obtain, that S/N > 1 for δω > 0.5 MHz.

4.5 Pulse sequencer

4.5.1 Experiment timing

Our experiment runs in stages. We start with an atomic cloud preparation, after switch-

ing the magneto-optical trap off we send an optical pumping pulse, which is followed by an

experimental sequence. During the last stage we send two pumps either simultaneously or

with a variable delay. When the cloud is dispersed, we repeat these stages all over (Fig.

4.13).

To perform such a versatile design cheap we constructed a signal generator of a pair

of direct digital synthesizers (AD9959 ) and micro-controllers (Arduino DUE ). Each direct

digital synthesizer has four channels of a sine signal with frequencies up to 200 MHz. One

can sweep frequency and amplitude, or switch them between many levels independently. To

prepare an optical pulse we use an acousto-optical modulator from Isomet in each path.
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Figure (4.13) Experimental timing stages: (I) preparation of cold atomic cloud, (II) optical
pumping, (III) series of pump cycles. Dots mean that this cycle repeats continuously.

The shortest pulse we can obtain is determined by an acoustic wave velocity of the material

and the beam size. As an example, model 1205c-X has a Lead Molybdate crystal with

the acoustic velocity is 3.63 mm/µs. The typical focused beam size is 100 µm leads to an

estimate rise time of 30 ns. The shortest pulses we have been working with in an experiment

were 200 ns long.

The first stage of atomic cloud preparation takes 500 ms, while two lasers and coils work

simultaneously. After that we switch off the magnetic coils, wait for 50 µs and switch off

one of the cooling lasers. Depending on which level we want to polarize the ensemble, we

keep either repumping for an extra 30 µs, thus atoms are pumped on |F = 2 〉; or we keep

the cooling laser longer on, so the atoms are mainly on |F = 1 〉.
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4.5.2 Magnetic coil switch

We employ a magnetic switch with relative fast switching time and suppressed eddy

currents. Suppression of Eddy current is important, since the rapid change of current through

the coils, such as switching, produces a burst of magnetic field. Such bursts are not desired,

since they wash out atoms from the MOT region. The symmetrical electrical circuit employs

use of two stage switching of transistor for each coil (see Fig. F.1) and is based on [119].

The switching function for high current going through the coil is realized via PNP BJT

MJ 2955 transistor. The base currents of the transistors are controlled by TIP31C NPN

transistor. In turn, an input voltage is converted into TIP31C base current by a comparator

based on operational amplifier OPA137PA. It isolates the switching circuit from the pulse

controller input impedance. High CMOS level of input voltage saturates the comparator,

what changes the emitter-collector resistance of TIP31C transistor. Therefore the base of

MJ2955 is shortened on a ground trough 1 Ω resistor opening the emitter-collector path and

allowing a current to go through the coils L1,2. The low level of the input voltage closes

TIP31C and consequently put a high voltage on base of PNP, what closes current through

the coils.

The performance of this circuit is shown in Figure 4.14. An expected switching time

scales as the ratio between inductance and resistance and is 2 µs for our coils. The switching

off time is suppressed to 8 µs and could be seen on the inset. We switch off the magnetic coils

50 µs prior to cooling and repumping lasers. The rise time for the coils is 200 µs, although

it doesn’t affect our experiment, as we are not optimizing a repetition rate.

4.6 Homodyne detection

Currently, there are two common approaches to acquire quantum statistics in optics: it

is either in the Fock basis or in continuous quadrature basis. Most of the detectors for mea-

surement in the Fock basis, such as single photon avalanche photodiodes, only distinguish
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Figure (4.14) In this figure we demonstrate a voltage across a small resistance connected
in series with one of the two coils. We switch off (ON→OFF) our coils at 100µs and monitor
how quickly the voltage will drop to zero (for enlarged image see inset). We switch the coils
back on (OFF→ON) at 500 µs. Two different colors correspond to lower and upper coil.
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vacuum from all other possible excitations, meaning that the detector “clicks” for one or

any number of photons in a pulse and produces “no click”, when there is only a vacuum. In

principle, such a system can be extended to resolve two and more excitations by building a

tree with beamsplitters, delay lines and linear optics; however, such detection schemes are

not robust against detector’s imperfections (inefficiency, dark noise) [120]. The recently de-

veloped superconducting nanowire detector is capable of distinguishing a number of photons

[121, 122]. Yet such a device requires special calibration and only a limited part of the Fock

basis is resolvable.

The alternative way is to perform measurement in continuous basis (or the phase space),

what corresponds to measurement on a basis spanned on eigenvectors of conjugate position

and momenta of the electromagnetic field. This measurement is usually performed with a

homodyne detector and allows to characterize the density matrix of the electromagnetic field

by reconstructing it from the acquired quadrature’s distributions [123].

In this section we describe the basic theory of homodyne detector operation and extend

it to the two mode case. The experimental imperfections are presented and quantified. At

the end we apply this technique to the detection of TMSV.

4.6.1 Basic theory

The balanced detection is realized via mixing the signal mode âsig with a large amplitude

coherent state |α 〉 (|α| � 1) on a 50/50 beamsplitter. For generality we assume that

these two fields have different central frequencies ωLO and ωsig. Two output channels of the

beamsplitter are described by annihilation operators:

ĉ1 =
(âLOe

−iωLOt + âsige
−iωsigt)√

2
, ĉ2 =

(âLOe
−iωLOt − âsige

−iωsigt)√
2

. (4.13)
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Each channel of the beamsplitter is sent on the photodetector producing a current propor-

tional to the numbers of photons in the mode with the coefficient of proportionality g:

〈 Î1 〉 = g〈 ĉ†1ĉ1 〉 = g
〈 (â†LOe

iωLOt + â†sige
iωsigt)(âLOe

−iωLOt + âsige
−iωsigt) 〉

2
, (4.14)

〈 Î2 〉 = g〈 ĉ†2ĉ2 〉 = g
〈 (â†LOe

iωLOt − â†sigeiωsigt)(âLOe
−iωLOt − âsige

−iωsigt) 〉
2

. (4.15)

Assuming the local oscillator to be the large coherent state, we can transfer from operators to

classical amplitudes: âLO = |α | e−iφ. The currents from the photodetectors are subtracted

from each other:

〈 î 〉 = 〈 Î1 〉 − 〈 Î2 〉 = g〈 â†LOâsige
−iδωt + â†sigâLOe

iδωt 〉 =

= g |α | (〈 âsige
−i(φ+δωt) + â†sige

i(φ+δωt) 〉), (4.16)

where the difference between central frequencies of two fields is δω = ωsig − ωLO. At the

moment t = 0 we observe a quadrature Q̂(φ), at other moments of time Equation (4.16)

represents a scanning through all quadratures Q̂(φ+δω·t) with a period 1/(δω). If frequencies

of two fields are equal, then δω = 0 and the result will be analogous to a measurement at

moments t = n
δω

, where n is an integer. Such a measurement is called a homodyne detection:

〈 î 〉 = g |α | 〈 âsige
−iφ + â†sige

iφ 〉 = 2g |α | 〈 X̂sig cosφ+ P̂sig sinφ 〉. (4.17)

The measured signal is equal to a quadrature of a field amplified by a LO amplitude |α |.

The phase φ is defined by the phase of a LO and can be scanned through to obtain different

quadratures Q̂(φ).
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4.6.2 Signal-to-noise ratio

Remarkably, an ideal homodyne in contrast to an ideal single photon detector produces

an output from every measurement. Thus different states can be distinguished by their

statistical distribution for given quadratures. One statistical figure of merit to use is the

variance of the output from Equation (4.17). In homodyne detection the vacuum input

creates nonzero variance of the output current, and it is natural to compare the signal

variance to it. Hence the signal-to-noise ratio is defined as a ratio between the mean square

signal current and the mean square noise current fluctuations [52]. In order to find the

variance of the noise we average our observable î over the vacuum state in a Fock basis | 0 〉:

Ns = 〈 î2 〉vac − 〈 î 〉2vac = g2 |α |2 = g2n̄LO, (4.18)

where n̄LO is an averaged number of photons in a local oscillator. This noise is called a shot

noise and it can be interpreted as an uncertainty in number of photons of a strong pump,

which follows a Poisson distribution. Fluctuations in a signal, in case the state of interest is

a Fock state with a number of photons nsig, is given by:

S = 〈n |∆î2 |n 〉 = g2 |α |2 (1 + 2nsig). (4.19)

As a result the signal-to-noise ratio is:

S
Ns +Ne

≈ S
Ns

= 1 + 2nsig, (4.20)

where we have neglected other noises compared to the shot noise Ne � Ns. We can deduce

two important statements from this formula. An assumption that we can infinitely increase

our quantum signal by increasing LO power falls apart, because together with a signal we

increase noise proportionally. The second conclusion is on a practical side: we need to

increase the LO power until this inequality Ne � Ns is valid, this will maximize the signal-
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Figure (4.15) Noise spectrum of two homodyne detectors used in the experiment. Only
electronic noise - dark blue line, in the presence of 10 mW of LO - blue line. Right axes
represent equivalent losses ηe

to-noise ratio.

Besides this fundamental limitation on a signal-to-noise ratio, there are experimental

imperfections such as photodiode detection efficiency, spatial and temporal mismatch be-

tween the modes, electronic noise of the detector. Such inefficiencies can be taken be into

account akin to effective loss for optical signal [124], which effect is well described by the

beam-splitter model (2.26). For photodetector inefficiency and spatial mismatch the effective

transmission coefficients are straightforward and correspondingly photodetector efficiency

and mode matching factor, what is usually expressed as maximal achievable interference

visibility for given modes. In turn, the finite ratio between electronic and shot noises of a

detector accounted as an effective transmission with analogous losses coefficient ηe = 100.1x−1
100.1x ,

where x is the ratio between shot noise and electronic noise in dB [125]. Summarizing all of

the above, signal-to-noise ratio for a weak coherent input state is:

S
N

=
ηd · ηvis · ηe · Psig

hν · δν
. (4.21)

There are a few crucial points which follow from the formula and should be kept in mind

while working with a homodyne detection in a quantum regime. First and obviously, mode-
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Pump 1
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Stokes

HDHD
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anti-Stokes

Figure (4.16) Two pumps with orthogonal polarizations enter the cavity through the input
mirror. Atomic cloud emits two photonic modes, again with opposite polarizations: Stokes
and anti-Stokes. The entangled modes are measured with two separate homodyne detectors.
The resultant quadratures are digitized and processed.

matching between LO and signal path is important and should be kept as high as possible.

In practice it means that visibility should be larger than 95%. Secondly, quantum efficiency

of a photodetector needs to be on the same scale, thus more than 90% corresponds to the

photodiode’s responsivity > 0.59 A/W at the central wavelength 795 nm.

In our experiment we use two homodyne detectors, which are based on [126]. Each

detector basically consists of a pair of Hamamatsu S5972 photodiodes and transimpedance

amplifier OPA 847. The fast response time of the diodes and large bandwidth of OPA 847

allows to achieve -3 dB bandwidth of 100 MHz with 4 kΩ transimpedance gain. The 50 MHz

band of shot noise in comparison with electronic noise are presented in the Figure 4.15 for

both detectors. Therefore to attain 98% of an effective transmission in 20 MHz band people

use at least 10 mW of LO [101].
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4.7 Acquisition

4.7.1 Optical detection path

Our collinear regime of FWM generation has its own complications and advantages. We

send two pumps collinear to the cavity mode, and they are detuned from the cavity resonance

by 60 MHz. Pumping fields will form a standing wave inside, moreover reflecting back and

forth for 100 times they induce both forward and backward FWM (for the phase-matching

conditions please see Subsection 5.1.2). Furthemore, the pump fields are strong coherent and

they unavoidably are reflected toward the detectors. On one hand, the homodyne/heterodyne

detection is a frequency resolved measurement. On the other hand, the beating signal

between LO and the pump acting on the same transition has frequency δ = 60 MHz and

falls in a bandwidth of a detector. It is strongly amplified and lifts the shot noise level at

all operational frequencies. We are minimizing this effect by splitting photons and pumps

from the same transition to different detectors via polarization, in particular, anti-Stokes

is right-circularly polarized, pump 2 is left-circularly polarized. Similarly, anti-Stokes and

Stokes photons are split on a PBS via polarization to follow into different detection arms.

They are then mode-matched with a resonant strong coherent beam (LO) and sent to the

corresponding detector (Fig. 4.16). The mode matching is performed with a coherent light

instead of a photonic mode and is repeated at least every day. The balanced detector

measures a quadrature Q̂(θ), where we can scan the phase difference θ between LO and the

quantum mode with a mirror controlled with a piezo actuator.

4.7.2 Data acquisition

While we minimized the back reflection of pumps into detectors, non-ideal polarizational

optics will let a noticeable amount to pass. We put a low pass filter to cut the remaining part

of the “leakage” electronically. A seemingly easy task had its pitfall: an output impedance

of the detector is not fixed, thus, the length of the cable, RF filters, and input impedance of
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a digitizer could change feedback loop characteristics. We use the sequence of 200 MHz →

100 MHz → 50 MHz and 20 MHz LPF, which does minimize the back reflection and keeps

the signal undisturbed.

The electrical signal after filtering is sent to either high-speed digitizer Acqiris or oscil-

loscope Agilent infiniuum, which are triggered by our pulse sequencer from Section 4.5. The

programmable PCI card allows us to see data being processed in real-time. Although, an

8-bit digitizer with a minimum range of 50 mV distorts a few millivolt signal, due to lack of

resolution. The final data is collected with an oscilloscope Agilent infiniuum ( 1 GHz highest

frequency and 4 GSa/s sampling rate) and processed afterwards.

4.8 Conclusion

In this chapter I have described the experimental tools I have built with my colleagues—

all except OPLL and homodyne—during my PhD program. Designing and constructing the

experiment from the very beginning enabled me to highlight the limitations of techniques

and mention unobvious pitfalls.

In summary, 87Rb atoms are cooled in a MOT. The atomic cloud is overlapped with a

cavity mode, which enhances the interaction and sets the preferable direction of the emission

of quantum fields. The cavity made has low finesse and its central frequency is locked to

an auxiliary laser. The dynamically controlled pumps are sent into an atomic cloud to

induce the FWM process. The emitted quantum fields are sent into two separate homodyne

detectors that measure their quadratures.
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Chapter 5

Two-mode squeezing generated via

four-wave mixing in cold atoms

The system built in the previous chapter is a platform for many quantum optical exper-

iments: single photon source [39], quantum memories [127], EIT and stationary light [128],

EPR paradox [45], and quantum state engineering [129], to name a few. In this chapter we

are discussing and demonstrating its operation as a source of the two-mode squeezing. The

first two sections are designated to characterize our system. Section 5.1 is devoted to sum-

marizing the detrimental effects, which affect the squeezing level and even more generally the

storage of the quantum state. In Section 5.2 we measure the strength of atom-light coupling

enhanced by the cavity. In Section 5.3 we demonstrate the OPO regime of the operation

near and above-threshold. Finally, in Subsection 5.3.2 we measure the amount of two-mode

squeezing.

5.1 Detrimental effects

Any physical system is far from the ideal model. When some effects are a few orders

of magnitude smaller than the measured signal, then they are indeed considered negligible.

Other processes generate noises of the same order of magnitude as the signal, thus signif-
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Figure (5.1) Four-wave mixing in a non-polarized atomic ensemble. The pumps and emitted
photons with the specified polarizations form three independent Λ schemes.

icantly distorting the result. In this section we make an estimation of how imperfections

affect the experiment on two-mode squeezing. Among them are non-ideal Λ scheme, possi-

ble phase-matching configurations, phase noise, and detection inefficiencies. One more effect

which is inherent to our experiment, specifically, and comes from the geometry of the layout,

is the standing wave formed by pumps (Subsection 5.1.3).

5.1.1 Loss of atoms

We have neglected until this time to consider that our Λ system has an internal structure.

In reality, the hyperfine metastable levels are degenerate in magnetic quantum number (Fig.

5.1), and we are going to resolve the splitting only when we have above 8 Gauss of an external

magnetic field1. In Subsection 4.7.1 we reasoned the polarization choice for two pumps and

photonic modes to effectively separate both signals to opposite channels and to minimize the

leakage. By setting the cavity axis to be our quantization axis and choosing the first pump’s

polarization arbitrarily to be σ+, we arrive at all other polarizations to be determined: σ−

for the Pump 2, σ+ for the anti-Stokes photon, and σ− for the Stokes.

Above, in Figure 5.1 the paths returning the atom back to its initial sublevel are included.

1The hyperfine Landé gF factor is 0.7MHz/G for 87Rb [67]. As an example, the Earth’s magnetic field is
0.25–0.65 G, and it induces 0.1–0.5 MHz level splitting.
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A simple consideration would demonstrate that only atoms returning back to their initial

Zeeman sublevel experience a collective enhancement. For the sake of simplicity, we consider

a single excitation to be involved in the DLCZ process. After the first pump acted and a

spontaneously emitted anti-Stokes photon was detected, the atomic wavefunction is

|Ψ 〉 =
1√
N

N∑
j=1

ei(kc1−k1)rj | 2 . . . 1j . . . 2 〉 . (5.1)

The second strong pump excites the atom to level | 3 〉 (|F ′ = 2 〉):

|Ψinitial 〉 =
1√
N

N∑
j=1

ei(kc1+kc2−k1)rj | 2 . . . 3j . . . 2 〉 . (5.2)

Now we would like to compare the strength of two transitions: the atom returns to the same

sublevel (Psame) or different (Pdiff) by emitting the Stokes photon. We apply the Fermi’s

golden rule for both cases:

Psame ∝ |〈Ψfinal |
N∑
j=1

d̂32
j â
†
2e
−ik2rj |Ψinitial 〉|2 =

=

∣∣∣∣∣ 1√
N

∑
j,k

〈 2 . . . 2 . . . 2 | ei(kc1+kc2−k1)rke−ik2rj | 2j 〉 〈 3j | · | 2 . . . 3k . . . 2 〉

∣∣∣∣∣
2

= N, (5.3)

where we consider perfect phase matching, and notations are the same as in Section 2.4. If

we consider the initial level to differ from the final state 1√
N

∑
k | 2 . . . Xk . . . 2 〉, then:

Pdiff ∝

∣∣∣∣∣ 1

N

∑
i,j,k

〈 2 . . . Xk . . . 2 | ei(kc1+kc2−k1)rie−ik2rj |Xj 〉 〈 3j | · | 2 . . . 3i . . . 2 〉

∣∣∣∣∣
2

= 1. (5.4)

In summary, the collective enhancement is proportional to the number of atoms and

manifests itself when the atom returns to the initial sublevel. This result means that

the second process is incoherent and will not result in generation of the correlated pho-

tonic pairs. In Figure 5.2 we can trace different ways the atom can follow and with only
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Figure (5.2) All atoms are initially pumped on |F = 2 〉, from where they are transferred
to an excited level |F ′ = 2 〉 by the right circular polarized pump 1 (light blue arrows). The
light blue arrow demonstrates the pumping process which takes place, although does not
result in detectable correlated photons. The spontaneous emission F ′ = 2→ F = 2 has two
parts: detectable and ’good’ photons (green wavy line) and undetectable red dahed arrows.
Dark blue arrows indicate the second pump. The second spontaneous emission process again
has detectable (orange) photons and inevitable (red-dashed) lost photons.

five coherently enhanced paths. Among the five paths there are three trajectories which

are detected. They are shown in Figure 5.1. Together with them there are two paths

|F = 2,mF = −2 〉 → |F = 1,mF = 0 〉 → |F = 2,mF = −2 〉 and |F = 2,mF = −2 〉 →

|F = 1,mF = 0 〉 → |F = 2,mF = −2 〉, which are coherent and enhanced, although they

are undetectable. Red dashed photons on the diagram have opposite polarizations com-

pared to ’good’ green and orange photons. Please note, that we have omitted spontaneously

emitted π-polarized photons from the picture. Their emission is suppressed by the phase-

matching condition and they are undetectable in our experiment, as they escape the cavity

mode.

From the description above we conclude that the main detrimental effect due to Zeeman

sublevels is a decrease of an optical depth. The generation of the noise photons into the

measurable mode is suppressed. Additionally, the probabilities of the spontaneous emissions

|F ′ = 2,mF ′ 〉 → |F = 1,mF 〉 are not evenly distributed, and are proportional to the hy-

perfine dipole matrix elements. The values are multiples of 〈 J = 1/2 | | er | | J ′ = 1/2 〉 [67],

and the squares of the multiplication factors are depicted in Figure 5.2.
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5.1.2 Phase matching

We have mentioned that in our experiment two phase-matching conditions coexist. In

this subsection we compare three mode-matching conditions (Fig. 5.3): collinear backward

and forward, and at 90 degrees [39]. The phase-matching condition is fulfilled if this sum

of the vectors ∆k = kc1 + kc2 − k1 − k2 is equal to zero2. The perfect phase-matching is

attributed to the forward collinear regime ∆kF = 0 in the case of two-photon resonances.

The other two sums of wavevectors are easily found:

∆kB = 2δ/c, ∆k90 =

√
2

c

√
∆2

HFS + δ2 (5.5)

In order to find the phase factor from Subsection 2.4.4, which is directly related to strength

Pump 1

Pump 2 Stokes

anti-Stokes

(F)

Pump 1 Pump 2

Stokesanti-Stokes

(B)

Pump 1

Pump 2

Stokes anti-Stokes

(90)

Figure (5.3) Three different phase-matching configurations

of the FWM process, we change the summation over each atom to an integration over an

ensemble. Using homogeneity in the transverse plane and even density distribution ρ(r), we

keep integration only along the cavity mode over the length of an atomic ensemble L:

φ =
∑
j

ei(kc1+kc2−k1−k2)rj →
∫
ρ(r)ei∆k·rd3r ≈ N

L

∫ L/2

−L/2
ei∆k·z sin θdz. (5.6)

2As a reminder the modulus of the wavevectors kc1 = ω23−∆2

c , kc2 = ω13−∆1

c , k1 = ω13−∆2

c , and k2 =
ω23−∆1

c .
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The phase factor is equal to number of atoms for the forward collinear regime (φF = N). The

phase matching is close to perfect for both the backward collinear and 90 degrees regime:

φB = Nsinc(∆kBL/2) ≈ N, φ90 = 0.9 ·N. (5.7)

From this point of view, the efficiency is the same. This would not be the case if we make

a delay between two pumps, as it was analyzed in the work by Zhao et al. [71]. Here we

follow their line of derivation. If we consider the storage we need to analyze what happens to

the spin-wave (SW) embedded on an atomic ensemble after the first (anti-Stokes) photon is

detected. All N atoms carry the phase of the SW, and the residual atomic movement leads

to its dephasing. In [71] the time of dephasing is defined as the time an atom needs to pass

1/2π of the SW wavelength. We find SW wavelength as λSW = 2π
|kc1−k1 | for three schemes:

λSW
F = 4.4 cm, λSW

B = 398 nm, and λSW
90 = 562 nm. The lifetime of a coherence τ = λSW

2πv

could be rewritten as a generalized function of angle and temperature:

τ(θ, T ) =
1

v |∆k |
=

√
m

kBT (k2
c1 + k2

1 − 2kc1k1 cos(θ))
. (5.8)

Figure 5.4 represents a lifetime of an SW in a cold atomic ensemble for temperatures from

the sub-Doppler to Doppler limit. The function strongly depends on an angle: for zero

degree lifetime is hundreds of milliseconds, whereas already for two degrees it drops below

hundreds of microseconds. Please note that all the fields propagate perpendicularly to an

acceleration of a free fall, so gravity will not additionally reduce the lifetime of an SW. The

counter-example is the work by Bimbard et al. [39], where the cavity is along the accleration

of a free fall and the velocity must be increased by g0t.

5.1.3 Standing wave

So far we did not take into account that our Fabry-Perot cavity makes the electric field

inside to form a standing wave pattern (Subsection 4.4.1). There is a distinct effect from the
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Figure (5.4) The dependence of a SW lifetime on a temperature (a) and on an angle (b).
(a) The plot is built for a collinear scheme, θ = 0. (b) The temperature of atoms is 50 µK.
The inset shows a smaller range of angles, which could be used as a semi-collinear scheme
in order to separate the pumps from signals.
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Figure (5.5) (a) The ratio of the effective nonlinear coefficient and cooperativity in a pres-
ence of a standing wave to their analogs in a running wave case as a function of the sample
size. (b) Spectrum of the nonlinearity coefficients χ and χ′. For the reference here we list
the parameters used to produce these graphs: δ1 = −δ2 = 60, Ω1=2π· 1.64, Ω2=2π · 4.66,
γ12 = 2π · 0.1, γ23 = γ13 = 2π · 6, ∆2 = 2π · 20, ∆2 = 2π · 80. All parameters are in MHz.
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collinear configuration on the generated fields: besides the modulated signal modes, both

pumps have a standing wave pattern, which is uncommon. The effect of the standing waves

for both pump and signal modes manifests itself as modulation of the pump’s Rabi frequency

and the cavity coupling constant respectively:

Ω1,2 ≈ ± |Ω1,2 | cos (k1,2 x) and g1,2 = ± | g1,2 | cos (k1,2 x), (5.9)

where x is a coordinate along the cavity mode. The plus or minus sign in the formula

originates from the frequency difference between two fields being equal to twice the FSR:

∆HFS + δ = 2FSR. This results in the phase difference between pumps/signals acting on

different transitions to be π (Subsection 4.4.2). The pumps are detuned from the cavity

resonance by 60 MHz, although they will still enter the cavity and form a standing wave

with k1 ≈ kc1 and k2 ≈ kc2 and smaller amplitude.

As a result we can estimate the change of the effective nonlinearity, cooperativity, and

their spectra, if we take into account that modulation occurs with wavevector k = 2π
λ

and

wavelength λ ∼ 795 nm. The nonlinear coefficient considered in a case of phase matching

takes the form:

χ′(ω) =
N

L

∫ L/2

−L/2

| g1 | | g2 | |Ω1 | |Ω2 | cos2(k1x) cos2(k2x)

δ̃2(ω)∆1(ω)
(
i(δ − ω) + γ12/2 +

Ω2
2 cos2 k2x

−i(∆2+ω)+γ23/2

)dx. (5.10)

Having this we can compare the new nonlinear coefficient to the one obtained without a

standing wave:

χ′(ω)

χ(ω)
=

∆̃(ω)δ̃1(ω)

L

∫ L/2

−L/2

cos2(k1x) cos2(k2x)
(
i(δ − ω) + γ12/2 +

Ω2
2 cos2 k2x

−i(∆2+ω)+γ23/2

)−1(
i(∆1 − ω) + γ13/2 +

Ω2
1 cos2 kx

i(δ−ω)+γ12/2+
Ω2

2 cos2 kx

−i(∆2+ω)+γ23/2

) dx.

(5.11)

The same effect takes place for cooperativities (Eq. 2.87). In a similar manner it is quantified
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and presented in Figure 5.5. As we can see in Figure 5.5(a), the standing wave decreases the

cooperativity by about a half, while the effective nonlinearity drops to about a third of the

initial value for a sample size larger than few resonant wavelengths. The spectral properties

of the gain are not affected as we can see in Figure 5.5(b). As a result we may state that

standing wave effect manifests itself as a reduction in both cooperativity and nonlinearity

and can be compensated by use of a larger or a denser atomic ensemble.

5.1.4 Phase noise

In this subsection we consider the effect of the phase noise on two mode squeezing gener-

ation. As it was shown in Section 2.1, the phase difference between the pumps φ determines

squeezing correlations between the quadratures. Furthermore from Equation (2.22) it follows

that the quadrature variance depends on the squeezing phase φ and the phases of LOs: θ1

and θ2. Thus the phase noise affecting the final result comes from two sources: one, the

phase noise between the two pumps inducing the FWM; two, the noise between the LO and

the signal in the homodyne detection. In our experiment the two pumps (and LOs) are

derived from two different phase-locked lasers, thus we would need to estimate how much it

will affect the level of squeezing. If we assume that during the time between generation and

detection the phase experiences normally distributed random fluctuations e
− (φ)2

2δφ2
√

2πδφ
with zero

mean and variance δφ, the maximal observed squeezing would be

〈 δQ2 〉 =
1

2

(
1 + r2 − 2re−δφ

2/2

1− r2

)
. (5.12)

Thus to quantify the effect we need to estimate the phase deviation on a time scale corre-

sponding to the delay between squeezing generation and detection. Taking into account the

noise spectrum presented earlier in Figure 4.5, we may estimate the phase variation as [130]

δφ2(τ) =

∫
S(f)sinc2 (πτf) df, (5.13)
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where S(f) is the noise power spectral density, and τ is the time interval. The result of

integration gives the square of relative phase variation to be δφ2 ≈ 0.02 rad2 for injection

locking (and 0.07 rad2 for OPLL) on a 100 ns time scale. The correlation decreases by a

factor e−δφ
2/2 ≈ 0.99 (0.966), which corresponds to an effective “transmission coefficient”

of 99.5% (98%). If the effective path lengths for the pumps and signals are matched with

the paths that the LO travels, then the time interval of hundreds of ns is a good estimate.

The correlation stays high, unless we are interested in a storage of quantum state, then on

a 10 µs time scale the variation increases to δφ2 ≈ 0.28 rad2 (1.17 rad2) and an effective

transmission coefficient is 93% (75%).

There are other approaches than an active phase stabilization, one of them is to derive

all beams from the same laser. For even better relative-phase stability between LO and

generated fields, LO could be generated inside the same media as the TMSV [15]. The

authors of [15] split the pump into two spatially separated parts. While the TMSV is

created in one part of the cell with only pumps being present; in the second part a bit of

seeding is added leading to a bright twin beam generation. The strong beams generated in

the FWM process serve as LO for the homodyne detection.

5.1.5 Detection inefficiencies

Losses in the system will disproportionally affect squeezing and antisqueezing levels as it

was shown in Subsection 2.1.6. Three main sources of losses are detection efficiency, optical

losses and phase stability. Homodyne detector efficiency includes quantum efficiencies of

the photodetectors of 91%, the finite ratio between electronic and shot noises results in an

effective transmission of 99% (Subsection 4.6.2), and mode-matching between local oscillator

and signal paths is set by the visibility of interference (is 94%)3. The pure optical losses for

each signal path in our experiment are of around 20%. Recalling that the phase stability

3During the data acquisition all the losses were the same, except for the visibility. The mode matching
between the LO and signal modes could have dropped to 85% due to thermal fluctuations, resulting in an
uncertainty of the overall losses of 5%.
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Figure (5.6) (a) The pulse sequence used for the cooperativity measurement. (b) Reflected
weak coherent light with a homodyne detector. At initial moment of time t=0 we let the
cloud expand.

from the above is 99.5%. Overall it gives us ηA = ηS = 35% of effective losses for each

channel. The measurable squeezing level with such losses could not exceed a 5 dB level.

5.2 Atom-light interaction measurement

We realized pulsed scheme which gives us access to another way of measurement of the

background pressure and the temperature of a cold atomic cloud. As a first step we prepare

the atomic ensemble and switch off the MOT, see Figure 5.6(a). While the atomic cloud

expands we probe it with minuscule power resonant to a transition we want to characterize,

so it will not induce any significant frequency shift or saturate the atoms. We monitor

reflected intensity of the probe field, as shown in Figure 5.6(b). In the first 10 ms we see

how the level drops at first as the atoms start to expand and leave the cavity mode. The

minimum reflection corresponds to the impedance matching described in Subsection 4.4.1.

After that the reflection increases to the level corresponding to the bare cavity. A simple

model—Equation (2.63)—fits the experimental data in Figure 5.6(b). From the fit we find

cooperativity to be 10.

A closely related measurement is based on the frequency shift of the cavity resonance
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(a) (b)

Figure (5.7) Cavity resonance frequency shifts in the presence of atoms. (a) The probe is
red detuned from the atomic resonance by ∆ = −30 MHz (b) Blue detuning ∆ = 20 MHz

due to atoms. We once again send the weak probe with a fixed non-zero detuning from the

atomic resonance, and monitor the frequency shift as demonstrated in Figure 5.7. We can see

a shot-to-shot discrepancy in the values, although the range of the cooperativity parameter

is limited by 10 to 20 depending on the alignment of the cooling beams.

Everyday before running the experiment we make sure that cooperativity is above 10. We

do optimization by consequentially aligning cooling laser beams and magnetic coils position

in three dimensions. While we run the experiment we monitor the atomic cloud position

and brightness on a camera to keep cooperativity high.

5.3 Four-wave mixing

In this section and below we present the results on quasi-continuous non-degenerate

FWM. First laser cooled atoms are prepared for 500 ms (Fig. 5.8), after that the gradient

magnetic coils are switched off to eliminate spatial Zeeman broadening. During the first 500

ms besides preparation of the cloud, we send the cavity lock laser, and we keep it off during

the FWM process.

The pumps with counter-rotating σ± polarization are derived from Ti:Sapphire laser and
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repeat

Pump 1

Pump 2

MOT

500 ms
500 µs

Figure (5.8) Time sequence for quasi-continuous non-degenerate FWM

(a) (b)

Figure (5.9) We keep the power of the second pump constant P2 = 50 µW, detuning ∆2

from the excited level is scanned through a few values written in the legend. (a) Signal in
the first channel in mV (b) Signal in the second channel in mV.

the injection locked ECDL respectively by modulation through the independent acousto-

optical modulators. The pump with σ+ polarization acts on
∣∣ 5S1/2, F = 2

〉
→
∣∣ 5P1/2, F = 2

〉
being red detuned by a variable value ∆2, while the second pump with σ− polarization acts

on
∣∣ 5S1/2, F = 1

〉
→
∣∣ 5P1/2, F = 2

〉
transition being red detuned by ∆2 = ∆2 + 60 MHz,

as it is depicted in Figure 5.1.

The pumps are launched into the same cavity spatial mode. The four-wave mixing

exposure happens for 500 µs. During this time the generated photons are measured on

corresponding homodyne detectors, where the LO’s frequencies are derived from the unmod-

ulated lasers, which are used for pumps. Each local oscillator is mode matched with a pump

and has a power of 10 mW.
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5.3.1 Threshold characterization

One of the OPO characteristics is a threshold of stimulated emission. When the gain

of an amplifier is large enough, the spontaneously emitted photons seed the amplifier and

provide positive feedback. The subsequent radiation becomes coherent and saturates the

gain of the OPO. In principle, coherent generation can be achieved in a free space [73], when

the gain is large enough that a single emitted photon still has a significant chance to be

amplified to macroscopic numbers of photons. The method exploited here is the use of a

cavity, which increases the effective lifetime of the emitted photon and hence the chances

for amplification of the successful seeding to a macroscopic value. In contrast to a free

space, where the threshold happens only in the backward configuration (Fig. 5.3), coherent

generation can happen in both travelling wave and standing wave in the cavity. According

to the model (Subsection 2.4.7) threshold occurs when the denominator is equal to zero.

To observe the threshold, we monitor the averaged variance measured by both homodyne

detectors, while changing the power of one pump for a number of detunings and for the fixed

second pump power. The averaged homodyne outputs normalized to the vacuum’s value are

presented in Figure 5.9. As it is expected, the output is symmetrical for both channels and

increases by two orders of magnitude at the saturation. Saturation represents the lack of the

second pump’s strength to provide conversion of the Stokes photon into the anti-Stokes. Each

curve represents different detunings of the pumps from the excited level. As the detuning

becomes large the gain decreases as ∼ 1
(∆1−∆2)∆1∆2

. Despite getting lower gain, the losses

due to spontaneous emission also decrease ∼ 1
∆1

. As a result, for a relatively small detuning

the decrease in gain is compensated by a reduction in losses and the maximum output value

is the same, while for a larger detuning the gain reduction cannot be compensated further.

The chart of the above-threshold generation as a dependence on both pump powers

and detuning ∆2 is presented in Figure 5.10. Here we see, that effective parametric gain

is proportional to the cooperativity and the pumps amplitudes, therefore there is linear

dependence on the pumps power ratio. In theory, the losses are proportional to the real part

113



(a) Simplified theory (b) General theory

(c) Experimental data

Figure (5.10) The chart gives a map of the threshold generation. (a) Simplified theory
given by formula (2.106) with parameters C = 10 and γ13 = γ23 = 2π · 6 MHz. (b) General
theory given by equation (2.104) with parameters C = 13, γ13 = γ23 = 2π ·6 MHz, κ = 2π ·30
MHz and γ12 = 2π · 10 kHz. (c) Experimental data.
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(a) (b)

Figure (5.11) (a) The spectrum of signal with a power of the first pump being scanned.
Other parameters are fixed: Ω2 = 100µW, ∆2 = 30 MHz. Red hexagons are the exper-
imental data with red line being the theoretical fit. We have extended the theory above
the threshold with the same values (line with red circles). Parameters used in calculation
C = 13, γ13 = γ23 = 2π · 6 MHz, κ = 2π · 30 MHz and γ12 = 2π · 10 kHz. (b) The spectrum
of squeezing and anti-squeezing levels averaged over 10 sets.

of cooperativity and stay constant for different pump powers. However, for tightly focused

pumps their inhomogeneous beam profile produces a transverse Stark shift that reduces the

collective coherent enhancement and hence the gain. Thus at high pump powers we have

discrepancy between theory and experiment.

As we can see from Figure 5.11(a) as we approach the threshold the linewidth of the

generated light significantly reduces. The observed dependence of the rapid decrease of

signal bandwidth stops at ∼ 100 kHz, which corresponds to the linewidth of the Master

laser and this limits the ultimate gain bandwidth.

5.3.2 Experimental results on continuous TMS

For observing the squeezing we decrease the pump power to make sure that operational

conditions are below the coherent generation (see map 5.10). In Figure 5.12 we present the

traces from two homodyne detectors, which we acquire during 200 µs, while both pumps

are present (Fig. 5.8). The traces are normalized by the standard deviation of the signals in
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absence of the pumps (standard quantum limit). We keep all phases locked to demonstrate

correlation between the same quadratures X1 and X2. Single channel homodyne output is

expected to be in a thermal state, i.e., having super-Poisson distribution in photon numbers

and Gaussian distribution in the phase space. In other words, the signals have a standard

deviation larger than the one for the vacuum (see Fig. 5.12(a)).

To establish the entanglement we find the sum and difference between traces or quadra-

tures (Fig. 5.12(b)). From the distributions on the right inset we can find squeezing and

anti-squeezing levels via this formula 10 log
(

Std2

2

)
. For the specified set of data we have

these values: -1.35 dB of squeezing and 7.1 dB of anti-squeezing.

We account for losses via formula (2.30), where optical and detection losses are 35% in

each channel. The corrected squeezing level is -2.3 dB. However, for the same parametric

gain the anti-squeezing level is 1.65 dB (or corrected 2.3 dB), which is far from the measured

value. The remaining disbalance between measured squeezing and anti-squeezing levels is

attributed to the non-ideal efficiency of correlated pair generation akin to efficiency in the

DLCZ protocol. Thus we can estimate the efficiency of correlated pair generation by fitting

squeezing and anti-squeezing levels by Equation (2.30), where an additional 43% of losses in

both channels match the theory with the experiment.

Another important characteristic is bandwidth of squeezing (Fig. 5.11(b)), which deter-

mines the correlation time between the two modes. To obtain the spectrum we applied a

low-pass filter digitally and searched for a squeezing level. This bandwidth reconciles with

our theoretical estimation (see Fig. 5.11). At small pump powers the bandwidth is mostly

dictated by the natural linewidth of optical transition, which is 6 MHz (Table 4.1).

One more way to monitor squeezing is to scan through quadratures by varying the phase

of one of the LOs or one of the signals. In fact the phase is always scanned as the air and

optics vibrate, however a more predictable way is to scan one of the mirrors with a piezo

actuator. We used a slightly different frequency for one AOM controlling the pump that

effectively scanned the phase in a bigger frequency range (see Fig. 5.13). In this figure it is
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(a)

(b)

Figure (5.12) (a) The signal measured by each homodyne detector during 200 µs of acqui-
sition. (b) Sum and difference between the signals from subfigure (a) show antisqueezing
and squeezing in the time domain correspondingly. The inset on the right demonstrates the
quadrature distribution (a) of Stokes and anti-Stokes photons and (b) of sum and difference
between two channels.
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(a) (b)

Figure (5.13) The signal scanned by detuning of AOM frequency by 4 kHz. (a) Raw data
acquired with an oscilloscope. (b) Processed data, which is a ratio of the signal to the shot
noise and the fit.

clearly visible how the noise of sum/difference between two channels changes from high noise

levels to low with a scanning period of 250 µs. Naturally, the sum and difference change

out of phase (Section 2.1.3). As in a no-scanning regime we divide the signal by the shot

noise level and find the squeezing and anti-squeezing levels (Fig. 5.13(b)). The curve is fit

with a simple beam-splitter model of losses (Eq. 2.30). The averaged -1.9 dB of squeezing

corresponds to the corrected -3.7 dB. The efficiency of generation of correlated pairs is 55%,

which follows from the antisqueezing level.

5.4 Conclusion

In this chapter we summarize limitations of our experimental setup as a source of the

two-mode squeezed vacuum. By measuring the weak resonant light from the cavity we find

the cooperativity parameter. We show that the developed system can operate in the regime

of optical parametric oscillator. We characterize the system by monitoring the threshold

conditions, bandwidth and intensity of generated signals below the threshold. We show

consistency between our experimental data and the theory introduced in Chapter 2. We

provide results on continuous TMS, where we obtain 1–2 dB of squeezing without account-
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ing for losses. The optical and detection losses are 35% per channel, thus the corrected

squeezing level is -2.3 to -3.7 dB. We estimate conditional efficiency of correlated photon

generation pairs from our atomic ensemble to be up to 55%.

The paper relevant to this chapter is in preparation.
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Chapter 6

Conclusion and Outlook

Here I summarize the key findings of the thesis.

In Chapter 2, we give the necessary theoretical background for the generation of two-mode

squeezing in atomic media. We begin the chapter with an overview of the main properties of

the two-mode squeezed light. We review squeezing generated via parametric processes and

indicate immanent limitations, such as losses and limited gain. We show how the use of a

cavity together with the nonlinear media enhances squeezing and modifies its bandwidth.

We build a model to describe the generation of two-mode squeezing in cold atoms coupled

to a cavity. To do this, we present the necessary theoretical background for the description

of the interaction between the cavity field and ensemble of two-level atoms. To quantify the

coherent interaction between light and atoms, the cooperativity parameter is introduced,

and its measurement via the light reflected from the cavity is discussed.

The model is further extended to three-level atoms that interact with two cavity modes to

describe the desirable FWM in cold atoms. The approximations for getting the analytically

solvable system of equations are introduced and justified numerically. The link between the

obtained equations for the two cavity modes and generalized OPO is discussed. The various

regimes of two-mode light generation are presented, such as coherent generation above the

threshold and different types of asymmetrical generation below the threshold. An appearance
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of the above-the-threshold regime is quantified depending on the experimentally accessible

control parameters. Based on the analysis, the intuitive strategy for enhancing two-mode

squeezing is proposed.

In Chapter 3, we introduce a new type of two-mode resonant transparency that is not

based on EIT. The TMS state with a specific parametric gain parameter is not absorbed by

the resonant media, because of quantum interference between the two optical modes. The

proposed phenomenon leads to generation of narrow-band TMS light through dissipation

rather than conventional unitary evolution. The optical dark state discovered is a new type

of resonant transparency. While indirect experimental evidence through two-mode squeezing

generation exists, direct experimental justification is needed. The described mechanism of

dark state formation can be generalized for light-atom interaction depending on atomic

ensemble polarization, and therefore, this mechanism can be used for generation of more

complex quantum states of light. The use of cavity modes instead of free space may bring

new phenomena. This requires additional studies.

Chapter 4 is devoted to the description of experimental apparatus for the generation of

TMS state in a cold atomic ensemble. First, the main components for the obtaining of a cold

atomic cloud are listed. Secondly, the custom vacuum chamber and the pumping process

for obtaining a high vacuum are described. Thirdly, the roles and properties of constructed

lasers are reviewed. The different techniques of frequency stabilization are listed accordingly

to their performance and frequency stabilization requirements. The obtained cold atomic

cloud of 87Rb in a magneto-optical trap is characterized by the time of flight measurement.

In the subsequent section we choose the appropriate optical cavity design and param-

eters. The Pound-Drever-Hall stabilization technique is used to keep the cavity’s length

constant. All blocks of the experiment are controlled by the time sequencer, which is based

on direct digital synthesizers and microcontrollers. This electronic control system is versatile

and allows easy modifications while an experiment runs. We discuss its performance and

limitations. The measurement of the quantum correlations of two modes of light is done via
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two optical homodyne detectors. We cover the basic principles of their operation and high-

light particularities of their operation. The acquisition and analysis of homodyne outputs is

realized via the high-speed analog-to-digital converter, the details of which are discussed in

the last section of the chapter.

The system we built is versatile and capable of generating different types of quantum

states. In Chapter 5, this system was shown to operate as the generalized OPO having several

regimes. Its properties were examined theoretically and experimentally. The regime suitable

for generation of entangled light was identified, and the TMS state, with the squeezing factor

below −3.7 dB and the efficiency of the pair creation up to 60%, was demonstrated.

The main limitation for further increase of the efficiency in our setup was the lack of

power for pumps in order to increase further single photon detuning while maintaining high

enough gain. The increased detuning would eliminate losses in both modes due to direct

absorption. The use of a ring cavity with a large waist can eliminate the inhomogeneities

of light-atom coupling and hence improve the efficiency of pair creation to above 79% [39].

Moreover, the ring cavity enables efficient splitting of signals and pumps, thereby reducing

our optical losses from 20% to 10% or less. Use of both photodiodes having larger quantum

efficiency and polarization optics with a better extinction ratio would increase the detection

efficiency up to 90% [12].

Our experimental system has the potential to be significantly improved in the future. To

achieve this, one major improvement is to introduce an optical dipole trap ( unaffordable

at the time the setup was built). If we trap atoms in the optical dipole trap, the hyperfine

coherence time can be increased by three orders of magnitude, since atoms are confined

in the interaction area [42]. This provides a way for the long time storage of continuous-

variable entanglement between light and atoms. Additionally, the large trapping time would

enable the continuous generation of TMSV on a minute time scale [38] rather than the quasi-

continuous generation for milliseconds. These improvements can make the system suitable

for the generation of high-purity TMS and long-time quantum memory akin to the DLCZ
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protocol.

The experimental setup that we built is unassembled and our work at present will not be

continued in this group. Despite this, our findings are instructive and inspiring for further

research on quantum repeaters with light and atoms. Long-term perspectives can include

the investigation of a potential purification scheme to reduce the effect of optical losses

on the two-mode squeezed state. Together with this, the temporal, spatial, and frequency

multiplexing can lead to larger entanglement generation rates.
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Appendix A

Langevin operators

To take into account the spontaneous emission the Heisenberg-Langevin approach could

be used, where the decay of the coherence R̂j
nm can be expressed in the general form as

dR̂j
nm

dt
= −γnm

2
R̂j
nm − i[R̂j

nm, Ĥrf] + F̂ j
nm, (A.1)

where γnm is the decay constant and Ĥrf is Hamiltonian (2.65) in the rotating frame. We

have assumed, that Langevin noise operator F̂nm is composed from Markov bosonic bath

annihilation operator at zero temperature coupled to atomic population difference operator.

In turn the equations for population operators have the form:

dR̂j
33

dt
= −(γ13 + γ23)R̂j

33 − i[R̂
j
33, Ĥrf] + F̂ j

33, (A.2)

dR̂j
22

dt
= γ23R̂

j
33 − i[R̂

j
22, Ĥrf] + F̂ j

22, (A.3)

dR̂j
11

dt
= γ13R̂

j
33 − i[R̂

j
11, Ĥrf] + F̂ j

11 (A.4)

The baths for two atomic transitions are assumed independent. Langevin noise operator

has zero mean value 〈 F̂nm(t) 〉 = 0. In turn, two-time correlator has the delta-type correlation
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[53, Ch. 9]:

〈 F̂ i
nm(t) · F̂ j

n′m′(t
′) 〉 = δ(t− t′)δij〈 F̂ j

nm · F̂
j
n′m′ 〉, (A.5)

To derive the former correlator we may notice, that these equation has common form

dẑ

dt
= Âz + F̂z, (A.6)

where Ây represent deterministic part of the equation, F̂y is corresponding Langevin noise

operator. The former is obtained through generalized Einstein relation [131]:

〈 F̂zF̂x 〉 = −〈 ẑÂx 〉 − 〈 Âzx̂ 〉+
d

dt
〈 zx 〉 (A.7)

As the result, the values for correlators are presented in the Table (A.1). Due to linear-

ity of the Fourier transform similar expression takes place for frequency domain Langevin

operators 〈 F̂ j
nm(ω′), F̂ j

n′m′(ω) 〉 = δ(ω− ω′)〈 F̂ j
nmF̂

j
n′m′ 〉, where the values for 〈 F̂ j

nmF̂
j
n′m′ 〉 are

also presented in the A.1.

A.1 Langevin noise contribution

The contribution of the stochastic operators into the observables happens due to the

following superposition of Langevin operators:

δF1 = |g1|
∑
j

e−ik1rj

(
δ̃1(ω)F̂ j

13(ω) + |Ω1Ω2|
δ̃2(ω)

ei(kc1+kc2)rj F̂ j
32(ω)− i|Ω1|eikc1rj F̂ j

12(ω)
)

(γ13/2 + i (∆1 − ω))
(
δ̃1(ω) + |Ω1|2

γ13/2+i(∆1−ω)

) (A.8)

δF2 =
∑
j

|g2|eik2rj

(
i|Ω2|e−ikc2rj F̂ j

12(ω) + δ̃3(ω)F̂ j
32(ω) + e−i(kc1+kc2)rj |Ω1Ω2|

γ13/2+i(∆1−ω)
F̂ j

13(ω)
)

δ̃2(ω)
(
δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

)
(A.9)
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F̂ j
13〉 F̂ j

23〉 F̂ j
12〉 F̂ j

31〉 F̂ j
32〉 F̂ j

21〉

〈F̂ j
13, 0 0 0

γ13〈 R̂j
11 〉

+γ13〈 R̂j
33 〉

γ32〈 R̂j
12 〉

+γ13〈 R̂j
12 〉

−γ12〈 R̂j
12 〉

0

〈F̂ j
23, 0 0 0

γ13

2
〈 R̂j

21 〉
+γ23

2
〈 R̂j

21 〉
−γ12

2
〈 R̂j

21 〉

γ23〈 R̂j
22 〉

+γ23〈 R̂j
33 〉

0

〈F̂ j
12, 0

γ23

2
〈 R̂j

13 〉
−γ13

2
〈 R̂j

13 〉
+γ12

2
〈 R̂j

13 〉
0 0 0

γ12〈 R̂j
11 〉

+γ13〈 R̂j
33 〉

+γ23〈 R̂j
33 〉

〈F̂ j
31, −γ23〈 R̂j

33 〉
γ23

2
〈 R̂j

21 〉
γ13〈 R̂j

32 〉
−γ23〈 R̂j

32 〉
+γ12〈 R̂j

32 〉
0 0 0

〈F̂ j
32, 0 −γ13〈 R̂j

33 〉 0 0 0 γ12

2
〈 R̂j

13 〉

〈F̂ j
21,

γ13

2
〈 R̂j

23 〉
−γ23

2
〈 R̂j

23 〉
+γ12

2
〈 R̂j

23 〉
0

γ32〈 R̂j
33 〉

+γ12〈 R̂j
22 〉

0 0 0

Table (A.1) Langevin correlators matrix

The summation over atoms is replaced with one dimensional integration along the medium

as it was for inclusion of the standing wave effects. The integration damps the contribution

of the cross-correlators with the phase matching factor sinc(δkl) ∼ 10−3, what makes same

operator correllators negligible 〈 δF̃1,2 · δF̃1,2 〉 = 〈 δF̃ †1,2 · δF̃
†
1,2 〉 ≈ 0. Only the terms propor-

tional to the product of conjugate operators 〈F j
nm · F j

mn 〉 are left. As the result the second

order correlators the following contributions vanish in any geometry: In turn the terms non

zero terms are

〈 δF̃ †1 · δF̃1 〉 = | g1 |2
∑
j

− | δ1 |2 γ23〈 R̂j
33 〉(

γ2
13/4 + (∆1 − ω)2) (|δ̃1(ω)|2 + |Ω1|4

γ2
13/4+(∆1−ω)2

)+

+ | g1 |2
∑
j

|Ω1Ω2|2

| δ̃2(ω) |2γ23(〈Rj
33 〉+ 〈Rj

22 〉)(
γ2

13/4 + (∆1 − ω)2) (|δ̃1(ω)|2 + |Ω1|4
γ2

13/4+(∆1−ω)2

)
+ | g1 |2

∑
j

|Ω1 |2
(
γ23〈 R̂j

33 〉+ γ12〈 R̂j
11 〉
)
,(

γ2
13/4 + (∆1 − ω)2) (|δ̃1(ω)|2 + |Ω1|4

γ2
13/4+(∆1−ω)2

) (A.10)
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The second correlator:

〈 δF̃ †2 · δF̃2 〉 = | g2 |2
|Ω2 |2

(
γ32〈 R̂j

33 〉+ γ12〈 R̂j
22 〉
)

+ | δ3(ω) |2 γ23

(
〈Rj

33 〉+ 〈Rj
22 〉
)

∣∣∣ δ̃2(ω)
∣∣∣2 ∣∣∣ (δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

) ∣∣∣2 (A.11)

− | g2 |2
γ23

|Ω1Ω2|2
γ2

13/4+(∆1−ω)2 〈Rj
33 〉∣∣∣ δ̃2(ω)

∣∣∣2 ∣∣∣ (δ̃1(ω) + |Ω1|2
(γ13/2+i(∆1−ω))

) ∣∣∣2 (A.12)

The third correlator:

〈 δF̃ †1 · δF̃2 〉 ≈ | g1 | | g2 | |Ω1 | |Ω2 | ·

−
(
γ32〈 R̂j

33 〉+ γ12〈 R̂j
22 〉
)
− δ̃∗1(ω)

γ13/2+i(∆1−ω)
γ23〈Rj

33 〉+ γ23δ̃3(ω)

δ̃∗2(ω)
(〈Rj

22 〉+ 〈Rj
33 〉)

δ̃2(ω) (γ13/2− i (∆1 − ω))
∣∣∣ (δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

) ∣∣∣2 (A.13)

The last correlator

〈 δF̃ †2 · δF̃1 〉 = |g1| | g2 | |Ω1||Ω2|·

−
(
γ23〈 R̂j

33 〉+ γ12〈 R̂j
22 〉
)

+
δ̃∗3(ω)

δ̃2(ω)
γ23

(
〈 R̂j

22 〉+ 〈 R̂j
33 〉
)
− γ23〈 R̂j

33 〉
δ̃1(ω)

γ13/2−i(∆1−ω)

δ̃∗2(ω) (γ13/2 + i (∆1 − ω))
∣∣∣ (δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

) ∣∣∣2 (A.14)

If we can neglect the population on the upper level:

〈 δF̃ †1 · δF̃1 〉 = | g1 |2 |Ω1 |2
γ12〈 R̂j

11 〉+ |Ω2|2

| δ̃2(ω) |2γ23(〈Rj
22 〉)(

γ2
13/4 + (∆1 − ω)2) (|δ̃1(ω)|2 + |Ω1|4

γ2
13/4+(∆1−ω)2

)
〈 δF̃ †2 · δF̃2 〉 = | g2 |2

(
|Ω2 |2 γ12 + | δ3(ω) |2 γ23

)
〈Rj

22 〉∣∣∣ δ̃2(ω)
∣∣∣2 ∣∣∣ (δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

) ∣∣∣2 (A.15)

〈 δF̃ †1 · δF̃2 〉 =
| g1 | | g2 | |Ω1 | |Ω2 | ·

(
δ̃1(ω)

δ̃∗2(ω)
γ23 − γ12

)
〈Rj

22 〉

δ̃2(ω) (γ13/2− i (∆1 − ω))
∣∣∣ (δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

) ∣∣∣2 (A.16)

〈 δF̃ †2 · δF̃1 〉 =
|g1| | g2 | |Ω1||Ω2| ·

(
δ̃∗3(ω)

δ̃2(ω)
γ23 − γ12

)
〈 R̂j

22 〉

δ̃∗2(ω) (γ13/2 + i (∆1 − ω))
∣∣∣ (δ̃1(ω) + |Ω1|2

(γ13/2+i(∆1−ω))

) ∣∣∣2
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Appendix B

Generalized OPO

In the experiment two modes could have different gain due to asymmetrical populations

on ground levels | 1 〉 and | 2 〉. Consequentially losses for two modes might vary as well. Here

we introduce two different losses κin,1 and κin,2, and κ is still the losses through an input

coupler:

ȧ1 = −χa†2 −
κ+ κin,1

2
a1 +

√
κa1,in +

√
κin,1F̂1 (B.1)

ȧ†2 = −χ∗a1 −
κ+ κin,2

2
a†2 +

√
κa†2,in +

√
κin,2F̂

†
2 (B.2)

The solution of this linear system of equations with input-output relations applied, gives the

field outside of a resonator:

aout,1(ω) =

√
κκin,1F̂1(ω)

(
iω − κ+κin,2

2

)
+ χ

(
κa†2,in(−ω) +

√
κκin,2F̂

†
2 (−ω)

)
∆′

+

+ a1,in(ω)

(
iω − κ+κin,2

2

)
(iω +

κ−κin,1

2
)− |χ |2

∆′
, (B.3)

a†out,2(−ω) =

√
κκin,2F̂

†
2 (−ω)

(
iω − κ+κin,1

2

)
+ χ∗

(
κa1,in(ω) +

√
κκin,1F̂1(ω)

)
∆′

+

+ a†2,in(−ω)
(iω − κ+κin,1

2
)(iω +

κ−κin,2

2
)− |χ |2

∆′
, (B.4)
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Figure (B.1) Dependence of maximum squeezing level on losses in both channels κin,1 and
κin,2.

where the denominator is ∆′ = |χ |2 − (iω − κ+κin,1

2
)(iω − κ+κin,2

2
).

The arbitarary quadrature variance:

〈∆Q2
± 〉 =

|α1 |2 + |α2 |2 + | β1 |2 + | β2 |2 + | γ1 |2 + | γ2 |2 + |µ1 |2 + |µ2 |2

2
±

±<e
(
α1α

∗
2e
−i(θ1+θ2) + β∗1β2e

i(θ1+θ2) + γ1µ
∗
1e
−i(θ1+θ2) + γ2µ

∗
2e
−i(θ1+θ2)

)
, (B.5)

where coefficients are:

α1 =

(
iω − κ+κin,2

2

)
(iω +

κ−κin,1

2
)− |χ |2

∆′
, β1 =

χκ

∆′
, γ1 =

√
κκin,1

(
iω − κ+κin,2

2

)
∆′

,

β2 =
(iω − κ+κin,1

2
)(iω +

κ−κin,2

2
)− |χ |2

∆′
, α2 =

χ∗κ

∆′
, µ2 =

√
κκin,2

(
iω − κ+κin,1

2

)
∆′

,

µ1 =
χ∗
√
κκin,1

∆′
, and γ2 =

χ
√
κκin,2

∆′
.
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Appendix C

Steady-state population

C.1 Approximate solution

As a zero order approximation we assume the atomic system under an action of two

classical pumps without any quantum fields and stochastic operators. In this case the cor-

responding Heisenberg equations are:

dRj
13

dt
= −(i∆1 + γ13/2)Rj

13 − iΩ2(zj)(R
j
11 −R

j
33)− iΩ1(zj)R̂

j
12 (C.1)

dRj
31

dt
= (i∆1 − γ13/2)Rj

31 + iΩ2(zj)(R
j
11 −R

j
33) + iΩ1(zj)R̂

j
21 (C.2)

dRj
32

dt
= (i∆2 − γ23/2)Rj

32 + iΩ∗1(zj)(R
j
22 −R

j
33) + iΩ∗2(zj)R̂

j
12 (C.3)

dRj
23

dt
= (−i∆2 − γ23/2)Rj

23 − iΩ∗1(zj)(R
j
22 −R

j
33)− iΩ2(zj)R̂

j
21 (C.4)

dRj
12

dt
= −(iδ + γ12/2)R̂j

12 − iΩ∗1(zj)R
j
13 + iΩ2(zj)R

j
32 (C.5)

d(Rj
11 −R

j
22)

dt
= (γ13 − γ23)Rj

33 − iΩ2(zj)R
j
13 + iΩ2(zj)R

j
31 + iΩ1(zj)R

j
23 − iΩ1(zj)R

j
32 (C.6)

dRj
33

dt
= −(γ13 + γ23)Rj

33 + i(Ω2(zj)R
j
13 + Ω1(zj)R

j
23)− i(Ω2(zj)R

j
31 + Ω1(zj)R

j
32) (C.7)
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C.2 Collective operator approach

We introduced collective operators in the main text (Eqs. (2.82)–(2.83)) and assumed

phase matching and all coupling constants to be homogeneous, thus the system of equations:

dâ1

dt
= −(iδ1 + κ/2)â1 − i

√
Ng∗1R̂13 +

√
κâin,1 (C.8)

dâ†2
dt

= −(−iδ2 + κ/2)â†2 + i
√
Ng2R̂32 +

√
κâ†in,2 (C.9)

dR̂13

dt
= i
√
N(g1â1 + Ω2)(R̂33 − R̂11)− (i∆1 + γ13/2)R̂13 − iΩ1R̂12 +

1√
N

∑
j

F̂ j
13 (C.10)

dR̂32

dt
= i
√
N(g2â

†
2 + Ω1)(R̂22 − R̂33) + (i∆2 − γ23/2)R̂32 + iΩ2R̂12 +

1√
N

∑
j

F̂ j
32 (C.11)

dR̂12

dt
= −(iδ + γ12/2)R̂12 − iΩ1(zj)R̂13 + iΩ2(zj)R̂32 +

1√
N

∑
j

F̂12 (C.12)

dR̂11

dt
= γ13R̂33 + iN−1/2(g1â1 + Ω2)R̂31 − iN−1/2(g1â

†
1 + Ω2)R̂13 (C.13)

dR̂22

dt
= γ23R̂33 + iN−1/2(g2â2 + Ω1)R̂32 − iN−1/2(g2â

†
2 + Ω1)R̂23 (C.14)

R̂33 = 1− R̂11 − R̂22 (C.15)
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Appendix D

PDH circuit diagram
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Figure (D.1) PDH circuit diagram
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Appendix E

DAVLL circuit

Figure (E.1) DAVLL circuit diagram
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Appendix F

Magnetic coil switch
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Figure (F.1) Magnetic switch circuit diagram
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